607 research outputs found

    Modern therapies in atopic dermatitis: biologics and small molecule drugs

    Get PDF
    Atopic dermatitis (AD) is a frequent, chronic remittent skin disease. The pathophysiology of AD has been increasingly understood within the last years, which may help to identify different endotypes suitable for defined therapies in the future. A patient-oriented therapy considers phenotypical features in addition to genetic and biological markers. The most recent developments in biologics and small-molecule drugs for AD treatment are presented in this article. These molecules, if approved, could change the perspectives for future therapies. Dupilumab is the first approved biologic for the treatment of moderate to severe atopic dermatitis in adolescence and adulthood and has led to a significant improvement in the treatment of this chronic disease. In the present article we present real-life data on the efficacy of dupilumab in adult dermatitis patients. We also discuss other data relevant to the use of dupilumab, and address open questions important for the standard care of atopic dermatitis patients

    Influence heat-reflective coating on the decrease of heat losses of window constructions

    Get PDF
    Developed theoretical and methodological foundations of the optimal choice of space-planning and constructive decisions of low-rise buildings blocked type, aimed at improving efficiency of investment, energy and resource saving, creation of comfortable conditions for the population, ensure sustainable development of low-rise construction in the context of socio-economic priorities in the climatic zoning of the area of construction

    When Children Teach a Robot to Write: An Autonomous Teachable Humanoid Which Uses Simulated Handwriting

    Get PDF
    This article presents a novel robotic partner which children can teach handwriting. The system relies on the learning by teaching paradigm to build an interaction, so as to stimulate meta-cognition, empathy and increased self-esteem in the child user. We hypothesise that use of a humanoid robot in such a system could not just engage an unmotivated student, but could also present the opportunity for children to experience physically-induced benefits encountered during human-led handwriting interventions, such as motor mimicry. By leveraging simulated handwriting on a synchronised tablet display, a nao humanoid robot with limited fine motor capabilities has been configured as a suitably embodied handwriting partner. Statistical shape models derived from principal component analysis of a dataset of adult-written letter trajectories allow the robot to draw purposefully deformed letters. By incorporating feedback from user demonstrations, the system is then able to learn the optimal parameters for the appropriate shape models. Preliminary in situ studies have been conducted with primary school classes to obtain insight into children’s use of the novel system. Children aged 6-8 successfully engaged with the robot and improved its writing to a level which they were satisfied with. The validation of the interaction represents a significant step towards an innovative use for robotics which addresses a widespread and socially meaningful challenge in education

    Human and computational models of atopic dermatitis:A review and perspectives by an expert panel of the International Eczema Council

    Get PDF
    Atopic dermatitis (AD) is a prevalent disease worldwide and is associated with systemic comorbidities representing a significant burden on patients, their families, and society. Therapeutic options for AD remain limited, in part because of a lack of well-characterized animal models. There has been increasing interest in developing experimental approaches to study the pathogenesis of human AD in vivo, in vitro, and in silico to better define pathophysiologic mechanisms and identify novel therapeutic targets and biomarkers that predict therapeutic response. This review critically appraises a range of models, including genetic mutations relevant to AD, experimental challenge of human skin in vivo, tissue culture models, integration of “omics” data sets, and development of predictive computational models. Although no one individual model recapitulates the complex AD pathophysiology, our review highlights insights gained into key elements of cutaneous biology, molecular pathways, and therapeutic target identification through each approach. Recent developments in computational analysis, including application of machine learning and a systems approach to data integration and predictive modeling, highlight the applicability of these methods to AD subclassification (endotyping), therapy development, and precision medicine. Such predictive modeling will highlight knowledge gaps, further inform refinement of biological models, and support new experimental and systems approaches to AD

    Difficult to control atopic dermatitis

    Get PDF
    Difficult to control atopic dermatitis (AD) presents a therapeutic challenge and often requires combinations of topical and systemic treatment. Anti-inflammatory treatment of severe AD most commonly includes topical glucocorticosteroids and topical calcineurin antagonists used for exacerbation management and more recently for proactive therapy in selected cases. Topical corticosteroids remain the mainstay of therapy, the topical calcineurin inhibitors tacrolimus and pimecrolimus are preferred in certain locations. Systemic anti-inflammatory treatment is an option for severe refractory cases. Microbial colonization and superinfection contribute to disease exacerbation and thus justify additional antimicrobial/antiseptic treatment. Systemic antihistamines (H1) may relieve pruritus but do not have sufficient effect on eczema. Adjuvant therapy includes UV irradiation preferably of UVA1 wavelength. "Eczema school" educational programs have been proven to be helpful

    Clinical Efficacy of Blue Light Full Body Irradiation as Treatment Option for Severe Atopic Dermatitis

    Get PDF
    BACKGROUND: Therapy of atopic dermatitis (AD) relies on immunosuppression and/or UV irradiation. Here, we assessed clinical efficacy and histopathological alterations induced by blue light-treatment of AD within an observational, non-interventional study. METHODOLOGY/PRINCIPAL FINDINGS: 36 patients with severe, chronic AD resisting long term disease control with local corticosteroids were included. Treatment consisted of one cycle of 5 consecutive blue light-irradiations (28.9 J/cm(2)). Patients were instructed to ask for treatment upon disease exacerbation despite interval therapy with topical corticosteroids. The majority of patients noted first improvements after 2-3 cycles. The EASI score was improved by 41% and 54% after 3 and 6 months, respectively (p≤0.005, and p≤0.002). Significant improvement of pruritus, sleep and life quality was noted especially after 6 months. Also, frequency and intensity of disease exacerbations and the usage of topical corticosteroids was reduced. Finally, immunohistochemistry of skin biopsies obtained at baseline and after 5 and 15 days revealed that, unlike UV light, blue light-treatment did not induce Langerhans cell or T cell depletion from skin. CONCLUSIONS/SIGNIFICANCE: Blue light-irradiation may represent a suitable treatment option for AD providing long term control of disease. Future studies with larger patient cohorts within a randomized, placebo-controlled clinical trial are required to confirm this observation
    corecore