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Abstract 52 

Atopic dermatitis (AD) is a prevalent disease worldwide associated with systemic co-morbidities, 53 

representing a significant burden on individuals, their families and society. Therapeutic options for AD 54 

remain limited, in part due to lack of well-characterised animal models.  To better define 55 

pathophysiological mechanisms and to identify novel therapeutic targets and biomarkers that predict 56 

therapeutic response, there has been increasing interest in developing experimental approaches to study 57 

the pathogenesis of human AD in vivo, in vitro, and in silico.  This review critically appraises a range of 58 

models including: genetic mutations relevant to AD;  experimental challenge of human skin in vivo; tissue 59 

culture models;  integration of “omic” datasets; and the development of predictive computational models. 60 

Whilst no one individual model recapitulates the complex AD pathophysiology, our review highlights 61 

insights gained into key elements of cutaneous biology, molecular pathways and therapeutic target 62 

identification through each approach.  Recent developments in computational analysis, including the 63 

application of machine learning and a systems approach to data integration and predictive modelling, 64 

highlight the applicability of these methods to AD subclassification (endotyping), therapy development and 65 

precision medicine.  Such predictive modelling will highlight knowledge gaps, further inform refinement of 66 

biological models, and support new experimental and systems approaches to AD. 67 

 68 

Key words: Atopic dermatitis, atopic eczema, Endotype, Human models, Machine learning, Mechanistic 69 

models, Precision medicine, Tissue culture models, Skin equivalents, Systems biology 70 

 71 

Abbreviations 72 

ACD   Allergic contact dermatitis 73 

AD   Atopic dermatitis 74 

APT  Atopy Patch Test 75 

ILs   Interleukins 76 

 IRFs   Interferon regulatory factors 77 
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IPEX   Polyendocrinopathy Enteropathy X-linked syndrome 78 

LV   Langerhans cells 79 

PD   Pharmacodynamic 80 

PK   Pharmacokinetic  81 

RAST   Radioallergosorbent test 82 

RNA-Seq  RNA-sequencing 83 

SPT  Skin prick testing  84 

  85 

  86 
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Introduction 87 

Atopic dermatitis (AD; synonym atopic eczema) has a complex aetiology, involving multiple genetic and 88 

environmental factors1 2.  With its very high incidence in childhood, chronicity, devastating effect on quality 89 

of life for affected patients and their families, enormous socio-economic costs, and limited therapeutic 90 

options to date, AD represents a major challenge. Furthermore, there is clear evidence that AD represents a 91 

systemic inflammatory disease with multiple comorbidities extending beyond the well-recognized atopic 92 

associations3. Consequently, a number of animal models have been developed and utilized by investigators 93 

and the pharmaceutical industry to better understand the disease and consider new pathways to target4.  94 

However, as recently reviewed, mouse models do not adequately reflect the transcriptomic and gene 95 

pathways activated in human AD skin5 and the intrinsic difference between mouse and human skin 96 

represents a barrier to direct translation of findings from animals into human disease.  Consequently, there 97 

has been increasing interest in experimental studies in humans (in part facilitated by technological and 98 

“omic” developments), cell culture models utilizing human tissue, and the use of computational or 99 

mathematical models that are developed by integrating these data.  In this review article, we have used the 100 

term “human AD model” to define representations of the disease state and interventions that enable 101 

scientific insight into disease pathogenesis, disease course, and response to therapy.  We  delineate and 102 

critically appraise these AD modelling approaches that range from the experimental study of human skin in 103 

vivo (including challenge studies and detailed phenotyping and investigation of patients harboring specific 104 

genetic mutations), the generation of AD-relevant models using immunological, genetic and molecular 105 

methods in 2D and 3D human tissue culture, to the development of in silico computational models using a 106 

systems biology approach. Whilst a reductionist approach cannot by definition recapitulate the full 107 

spectrum of AD, these models have greatly increased our understanding of the molecular drivers of AD and 108 

provide a powerful tool for preclinical drug development and target validation. However, just as the 109 

etiology, clinical expression, and severity of AD range broadly among patients, in vitro and in silico models 110 

of AD vary widely both in how the AD phenotype is induced and how the models are evaluated. Therefore, 111 

we invited members of the International Eczema Council (IEC; www.eczemacouncil.org), a group of experts 112 
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in AD, and associated authorities in the field to contribute to a scoping and development meeting and 113 

subsequently to evaluate and critically appraise the breadth of human AD and computational models to 114 

determine their strengths and weaknesses in how they recapitulate the pathophysiology of AD and enable 115 

therapeutics to be tested and validated. 116 

 117 

In vivo models of AD 118 

To dissect the pathogenesis of AD, two general approaches using human in vivo models have been followed: 119 

i) the study of rare genetic variants with AD-like phenotypes; and ii) the experimental challenge of AD or 120 

non-AD subjects with allergens or irritants. Regarding the first approach, numerous studies have 121 

characterized genetic disorders that display skin barrier function abnormalities. Most often, these studies 122 

characterized ichthyosis vulgaris, a disease that allowed insights into the function of the epidermal 123 

differentiation gene FLG (encoding filaggrin), in which mutations show the strongest association to AD 124 

development of all known genes6 (Figure 1). Other studies have focused on disorders characterized by 125 

systemic inflammation3 and immunodeficiency with AD-like skin manifestations (Figure 1). One example is 126 

patients suffering from Immunodysregulation Polyendocrinopathy Enteropathy X-linked (IPEX) syndrome 127 

that serves as a model to study how systemic imbalances in the Treg population can drive cutaneous AD-128 

like inflammation7. In addition, the link between type 2 immunity, transcription factors such as JAK or STAT, 129 

and high levels of IgE was investigated in immunodeficiency syndromes such as STAT3 and DOCK-8 hyper-130 

IgE syndromes or combined immunodeficiency disorders8, 9. Table S1 lists the main genetic conditions that 131 

have provided insight into AD pathogenesis to date. Whilst the study of rare variants offers the opportunity 132 

to delineate distinct molecular mechanisms and control pathways of a particular phenotype, and thus may 133 

be regarded as “human models of AD”, a limitation of this approach is that not all observed phenomena are 134 

relevant in AD, which is more complex and heterogeneous than monogenic disorders.  135 

 136 

The second in vivo approach to study the pathogenesis of AD is standardized challenge with allergens or 137 

other environmental factors. The most commonly used model is the Atopy Patch Test (APT), an 138 
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epicutaneous challenge of specific allergens dissolved in vehicle10, which has provided insight into the 139 

temporal development of immune phenomena in AD11 (Table S2). Although developed in part to define 140 

clinically relevant reactions to aero-allergens, food allergens and autoantigens12 13 14, it´s validity and 141 

predictive value depend on a variety of factors in the protocol 15 and the APT is not used routinely in clinical 142 

practice.  Experimentally, the APT has provided insights into the the temporal sequence of cutaneous 143 

cellular infiltrates.  Acute skin lesions show a highly reproducible Th2 dominant inflitrate16, although other 144 

cell types including Th17 cells are also present17 18. This Th2 dominance is in sharp contrast to other 145 

inflammatory skin diseases such as psoriasis19, 20. Time course studies have shown that additional immune 146 

cell subsets, such as Th1 and Th22 cells, progressively infiltrate the skin during an ongoing APT reaction, 147 

mirroring the cellular composition of acute versus chronic human AD17 21.  The APT has also been used to 148 

characterize dendritic cells within early lesional AD skin, e.g. Inflammatory dendritic epidermal cells18. 149 

Furthermore, the APT has provided insights on the interaction of microbiota and our immune system, in 150 

particular the role of bacterial-derived superantigens acting as an amplifier of the allergen specific 151 

cutaneous response in AD21, 22 23.   In all these experimental APT studies, the population of AD subjects were 152 

well defined with specific inclusion and exclusion criteria (although the precise definitions of AD varied); in 153 

most studies AD, together with specific IgE to the corresponding allergen used in the APT, was an inclusion 154 

criterion. 155 

 156 

Hapten challenge to induce classical allergic contact dermatitis (ACD) in AD patients has also broadened our 157 

understanding of AD pathogenesis (Table S2). Whether AD patients have an increased risk of ACD remains 158 

controversial and may depend on whether they harbor FLG mutations, which may allowed increased 159 

penetration of allergens. However, attenuated ACD reactions have been reported in AD subjects compared 160 

to controls in a severity-dependent manner 24, 25. This might be due to the fact that haptens induce distinct 161 

immune responses26, with fragrances mimicking the Th2/Th22 dominance of AD while nickel, DNCB, or 162 

imiquimod27 induced Th1/Th17 skewed immune responses. Of note, AD patients show a Th2-skewed ACD 163 

reaction28, and this immune deviation might account for the diminished ACD prevalence in AD. A Th2 164 
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immune reaction profile of AD patients was also observed in an aero-challenge setup29, as well as when 165 

challenging AD patients with physical factors such as hard water30, 31.  166 

 167 

All current challenge models have some limitations (Table S2), as they only represent acute reactions and 168 

the small areas of applications cannot reproduce the intense pruritus and sleep disturbances usually 169 

present in AD.  Furthermore, to date they have not stratified for genetic differences/endotypes amongst AD 170 

patients comparing APTs in patients with and without FLG mutations, for example, might be a useful line of 171 

future investigation.  Moreover, in the future, molecular profiling of lesional skin from standardized 172 

challenge models, adjusted according to AD endotype,  might be used in early clinical studies to evaluate 173 

the potential of new drugs to improve AD32.  174 

 175 

In Vitro Models 176 

As shown in Table S3, there are several 2D cell culture and 3D organotypic models for AD that complement 177 

each other in addressing specific experimental questions. While, 2D cell culture models (by definition) do 178 

not duplicate the architecture of skin, they are amenable to high-throughput techniques for drug discovery 179 

and target validation (2D model section, Supplementary Table S3). Accordingly, Otsuka et al. used 2D 180 

cultures to screen a chemical library for compounds that enhance FLG transcriptional activation and mRNA 181 

expression, suggesting a potential novel therapeutic agent for AD33. On the other hand, 3D models replicate 182 

the stratified, squamous epithelium of epidermis, but require specific expertise and are time consuming. 183 

Epidermal equivalents consist of keratinocytes without a dermal compartment, while skin equivalents have 184 

a dermis, such as fibroblast-embedded collagen (3D model section, Supplementary Table S3). Both 2D and 185 

3D models are amenable to treatment with disease-relevant cytokines, gene knockdown, use of patient-186 

derived cells, and/or co-culture (Figure 2 and Supplementary Table S3).  187 

 188 

 The immune system is a major driver of AD and in vitro immune modulation with disease-relevant 189 

cytokines, such as interleukins (ILs), can lead to AD-like phenotypes in normal primary keratinocytes34 and 190 
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3D models 35-41 (3D cytokine model section, Supplementary Table S3). Knockdown of filaggrin in culture 191 

systems can give insight into the molecular and proteomic changes associated with its loss in AD42; and 192 

combining filaggrin knockdown with other perturbations, e.g., cytokine treatment, can be used to study the 193 

multifactorial drivers of AD. For example, Hönzke et al. reported that filaggrin knockdown exacerbated 194 

epidermal responses to IL-4 and 13, including increased proliferation and keratinocyte-released cytokines in 195 

3D skin equivalents43.  Patient-derived cells for 2D and 3D culture or tissue for explant culture are limited by 196 

access and availability, but may be the most relevant in terms of modeling AD 44-47. Further, patient biopsies 197 

can be a source of skin cells other than keratinocytes, allowing for co-culture models. Given that multiple 198 

systems contribute to AD, co-culture models that include immune cells, dermal fibroblasts, and neurons 199 

can begin to address their interplay with keratinocytes. For example, Berroth et al. derived keratinocytes 200 

and fibroblasts from normal and AD skin and showed that AD-derived fibroblasts are sufficient to decrease 201 

FLG mRNA in normal-derived keratinocytes in 3D culture47. Moreover, combining FLG knockdown with 202 

CD4+ activated T-cells uncovered direct cross-talk between keratinocytes and T-cells that resulted in T-cell 203 

migration within the dermal compartment towards the epidermis 48. These studies highlight the levels of 204 

complexity that can be engineered into the 3D culture models. 3D culture systems have also been used to 205 

understand environmental influences on skin, including air pollution, ultraviolet radiation exposure, and 206 

bacterial infection49-51. These relevant environmental factors could therefore be incorporated into in vitro  207 

models of AD. The 3D cultures and skin explants can also be used to assess the comparative efficacy and 208 

practical applicability of novel drug delivery systems 52, 53. Notably, despite the assorted methodologies 209 

applied in developing in vitro models of AD, there is overlap in the AD-like characteristics amongst the 210 

various models: most produce perturbed epidermal morphology, abnormal differentiation, and barrier 211 

dysfunction. Most often, disparities in reported phenotypes appear to stem, at least in part, from 212 

differences in the methodologies used in evaluating models (not necessarily because of the absence of the 213 

phenotype). 214 

 215 
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Although in vitro models may not mimic certain symptomatic and/or subjective aspects of the disease such 216 

as pruritus and pain, they allow monitoring of changes in epidermal morphology and differentiation, gene 217 

and protein expression, lipid synthesis, and barrier function. Histologically, AD skin sections and most 3D 218 

models of AD show profound changes in the epidermal compartment, including hypogranulosis, spongiosis, 219 

and increased cellularity due to hyperproliferation (3D model section, Supplementary Table S3). Changes in 220 

expression of genes (detected by microarray, RNA-sequencing (RNA-Seq), or qPCR) and protein (detected 221 

by liquid chromatography mass spectrometry, Western blot, ELISA, or immunohistochemistry) can be 222 

used to evaluate disturbances in differentiation and immune response in 2D and 3D models. Lipid synthesis, 223 

which is required for optimal barrier function, can be monitored by expression of related enzymes or 224 

directly by mass spectrometry. Epidermal barrier function can be monitored in 2D and 3D models, 225 

depending on the assay. We recommend that the phenotype of any AD in vitro model should be extensively 226 

characterized, and should include parallel analysis of epidermal morphology, differentiation status, loss or 227 

gain of key transcripts/proteins, analysis of immune components, and assessment of functional epidermal 228 

barrier parameters. Full characterization of any AD model can inform downstream evaluation of potential 229 

therapeutic agents with respect to reversing different aspects of the disease. Testing potential targets or 230 

drugs in several model types can add rigor and indicate if a signaling pathway or protein is central to the 231 

diverse manifestations of AD.  232 

 233 

In silico computational models 234 

A core element of a systems biology approach is development of in silico computational models 235 

(mechanistic models) by integration of different types of experimental and clinical data from multiple 236 

studies, including those associated with disease conditions. In silico experiments, i.e. computer simulations 237 

or mathematical analysis of in silico models, can test model-specific hypotheses, predict disease prognosis 238 

or treatment outcomes, and identify knowledge gaps, guiding future experiments and clinical trials that 239 

produce further data. This iterative process refines in silico models, providing holistic systems-level 240 
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mechanistic insights into how perturbations (treatments or risk factors) lead to whole-organism 241 

phenotypes.  242 

 243 

A mechanistic model describes causative interactions between the system’s components involved in the 244 

phenomena of interest (e.g. disease or treatment outcomes). Existing mechanistic models of AD vary 245 

widely depending on the levels of interactions (tissue, cells, proteins, genes) included in the model and 246 

mathematical methods used to describe the interactions. 247 

 248 

Domínguez-Hüttinger et al. developed a multi-scale deterministic model that delineates interactions 249 

between the environment, skin barrier integrity and immune activation by ordinary differential equations54 250 

(Table 1).  Two bistable “switches” are described – the first regulating the onset of AD flares and the second 251 

controlling progression to severe and persistent disease. The model predicts, for example, that genetic 252 

predisposition to barrier dysfunction (e.g. FLG haploinsufficiency) predisposes to longer flares and more 253 

persistent disease and that prophylactic emollient use may be beneficial (Table 1).  254 

 255 

Application of optimal control theory to the hybrid mathematical model can inform the  design of patient-specific 256 

optimal strategies for “proactive therapy” to prevent recurrent flares once the disease has been brought under initial 257 

control 55.   For example, this computational model supports the need for higher topical steroid treatment 258 

dose after disease worsening and the potential need for more frequent than 2-3 days per week application 259 

of topical steroid treatment to maintain remission56 in patients with FLG haploinsufficiency (Table 1), 260 

presenting a readily testable stratification treatment regime based on genotype.   261 

 262 

Polak et al. developed a stochastic Petri net model that delineates genetic regulatory mechanisms 263 

responsible for immune responses in Langerhans cells (LCs)57 (Table 1). The model describes reported 264 

interactions between interferon regulatory factors (IRFs), IRF transcription partners and DNA sequences in 265 

a logic-based diagram. In vitro experiments validated model predictions that LCs’ ability to present a 266 
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peptide is altered by cytokine milieu and that a PI3Kgamma inhibitor reduces the LCs’ ability to induce Th1 267 

responses. These smaller-scale and focused mechanistic models can describe detailed interactions which 268 

are difficult to be included and validated in multi-scale models. Inclusion of the detailed interactions would 269 

make the multi-scale models too complex to interpret and to be validated, due to the current lack of 270 

quantitative dynamic data that measures the variables across different scales simultaneously.  271 

 272 

Subramanian et al. used a pathway model that included manually-curated skin-specific pathways and 273 

relevant genes58 (Table 1).  Pathway enrichment analysis, using transcriptomic datasets of AD patients, 274 

provided mechanistic insights into drug actions of topical betamethasone and pimecrolimus. The pathway 275 

model would allow in silico experiments, once the kinetics parameters for pathways are identified, to 276 

provide quantitative and dynamic predictions of disease progression and treatment outcomes. 277 

 278 

Population pharmacokinetic and pharmacodynamic (PK/PD) models have also been developed to describe 279 

differences and variability in pharmacological effects observed in large clinical studies for AD treatments59 280 

60. The authors identified the model parameters that can best fit to the effects of nemolizumab and 281 

dupilumab measured in terms of AD severity score or pharmacokinetics (Table 1) 59 60. Population PK/PD 282 

models could help achieve mechanistic understanding of pharmacological effects, if combined with 283 

mechanistic models. 284 

 285 

One of the challenges in developing mechanistic models is identification of the components and the 286 

pathways that are relevant to the model-specific hypothesis to be tested. This can be achieved by unbiased 287 

multivariate analyses of a collection of large-scale data, for example by machine learning data analysis. 288 

Application of machine learning methods to AD-related data is relatively limited at present, but some 289 

relevant works have been already published. Thijs et al. developed a piecewise linear mixed model to 290 

predict AD severity scores after different treatments61 and Kiiski et al. developed a multivariate logistic 291 

regression model to predict a “good treatment response” 62.  A sufficient level of cross-validation is crucial 292 
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to reduce bias and to ensure the general applicability of models that have predictive power beyond mere 293 

description of data. 294 

All the models presented above were developed based on the published data derived from studies in which 295 

the inclusion and exclusion criteria for AD were specified.  Whilst the majority of studies utilised the Hanifin 296 

and Rajka criteria and specified further clinical (including co-morbidities) and demographical details, it is 297 

clear that patients with AD present with a wide spectrum of clinical and molecular features (including for 298 

example a greater heterogeneity in transcriptomic profile of lesional skin compared to psoriasis)63.   299 

 300 

Future developments 301 

The development of more sophisticated human models of AD that integrate large scale clinical and ‘omic’ 302 

data offer the potential for a deeper understanding of disease endotypes, molecular mechanisms 303 

underlying key pathogenic events and clinical hallmarks of AD, as well as prediction of therapeutic 304 

outcomes, including comorbidity at the level of an individual patient.  Accepting that, by definition, these 305 

human models are based upon a reductionist approach, they need to reflect the complexity of AD 306 

pathogenesis, including epidermal barrier dysfunction, altered penetration of chemicals and allergens, 307 

host/environment interaction, type 2 immunity, and tissue remodeling. We have illustrated in this review 308 

that the main approaches available today are in vitro models, identification and characterization of human 309 

inherited syndromes resembling AD, in vivo challenges of AD patients, as well as in silico models. Here, we 310 

speculate how the future of AD research will likely inform the development of more refined human models 311 

of AD. 312 

 313 

Refinement is likely to depend, at least in part, upon methodological advances in the field and the 314 

additional information generated by novel approaches.  For example, single cell sequencing has recently 315 

identified novel rare but important immunological subsets64 and intravital photon microscopy has enabled 316 

visualization of cell-cell communication during  inflammation65 66. Application of this technology to AD is 317 

likely to  inform the inclusion of distinct epithelial and immune cell types64 and/or genetically modified 318 
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primary human cells67. Furthermore, small-scale spheroid organoids may enhance high-throughput 319 

approaches in the field68. Finally, we expect that a technological breakthrough in the development of three-320 

dimensional skin models will be facilitated by cell printers69, 70.   321 

 322 

Deep neural networks are being applied as artificial intelligence tools to facilitate physician interpretation 323 

in the field of melanoma diagnostics 71 and increasingly as methods to enable large data set integration. 324 

The first examples of disease classifiers72 and prediction of disease severity from biomarker sets61, 73, 74 have 325 

recently been published, and we expect this line of development to continue while ensuring a sufficient 326 

level of validation. We anticipate that refinement of these methods, in combination with in silico models, 327 

may lead to computational approaches and predictive models applied to diagnostics and therapeutic 328 

stratification. The descriptive disease ontology of inflammatory skin diseases will need to be revised by 329 

shifting to pathogenesis-oriented structure75  and, in the future, by better definition of disease endotypes 330 

based on integration of multiomics data, clinical features, and clinical response to therapy in light of in silico 331 

models as assessed in large-scale and longitudinal cohorts76.  These advances are likely to inform the 332 

development of many of the current models. 333 

 334 

To achieve a substantial breakthrough, though, we expect that different approaches will need to be 335 

combined, integrated, standardized, and performed at larger scale (Figure 3). For example, observations 336 

made in rare human disease variants or by specific challenge models in AD patients may be validated in 337 

vitro and mapped to disease signatures in silico. Validation of functional hypotheses will increasingly 338 

depend upon cross-referencing of data derived from clinical samples with outputs from in vitro models. 339 

Integration of clinical, biomarker, PK/PD (topical and/or systemic) and clinical outcome data will inform 340 

therapy development and precision medicine. Notably, all of our models depend on how precisely a 341 

particular question is asked and the quality of the clinical input, including the clinical metadata and 342 

integration with omics data derived from clinical samples.  Finally, advanced statistical and machine 343 

learning analysis combined with in silico predictive modelling will be required to integrate information 344 
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throughout all described layers and data sets to elucidate underlying mechanisms (and endotypes), further 345 

highlighting the importance of data standardization and scientific networking.  346 

 347 
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Figure legends 357 

 358 

Figure 1. Diagrammatic representation of ‘Human knockout’ monogenic models providing insight into the 359 

pathomechanisms of AD. Specific genetic variants affecting the structural and/or immune functions of skin 360 

or other organs recapitulate features, but not the entire phenotype, of atopic inflammation and AD. 361 

CARD11, caspase recruitment domain-containing protein 11; CDSN, corneodesmosin; CTLA4, cytotoxic T 362 

lymphocyte-associated protein 4;  DOCK8, dedicator of cytokinesis 8; DSG1, desmoglein 1; DSP, 363 

desmoplakin; FLG, filaggrin; FOXP3, forkhead-box-protein 3; IL2RA, interleukin-2 receptor alpha; IL4RA, 364 

interleukin 4 receptor alpha; IFNGR1, interferon gamma receptor 1; MALT1, mucosa-associated lymphoid 365 

tissue lymphoma translocation protein 1; PGM3, phosphoglucomutase 3; RAG1, RAG2, recombination-366 

activated gene 1 and 2; SPINK5, serine protease inhibitor Kazal type 5; STAT3, signal transducer and 367 

activator of transcription 3. 368 

 369 

Figure 2. Human in vitro models of AD. In vitro models can be designed to address specific experimental 370 

questions based on the input materials of the cultures. Assessment of the cultures, or output, depends on 371 

the type of culture. HEE, human epidermal equivalent; HSE, human skin equivalent (inset: fibroblasts in 372 

collagen); FLG, filaggrin; IVL, involucrin; KRT10, keratin 10; DSG1, desmoglein 1;  CDSN, corneodesmosin; 373 

TSLP, thymic stromal lymphopoietin; TEER, trans-epithelial electrical resistance. 374 

 375 

Figure 3. Interconnected multi-layer networks: the future of human AD modelling. To answer clinically 376 

relevant questions such as identification of distinct disease endotypes, elucidation of molecular 377 

pathomechanisms, or prediction of therapeutic response, a combination of innovative in vitro and in silico 378 

models obtained by a systems biology approach and machine learning algorithms will be needed. 379 

 380 

 381 

 382 
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Table 1 384 

Model 

Type 

Scientific Merits  Clinical Utility  Limitations Key Features  

 

Key Findings/Predictions  Refs 

Multi-scale 

mechanistic 

model 

Mechanistic 

understanding of 

system-level 

effects of 

potential triggers 

and processes on 

disease state  

Identification of 

therapeutic 

targets, and 

their 

mechanisms, for 

further clinical 

investigation. 

Prediction of 

dynamic effects 

of therapeutics, 

leading to 

patient 

stratification  

Models 

developed 

based on 

hypothesized 

relationships 

that were 

previously 

described 

experimentally.  

A hybrid ordinary differential 

equation model of the 

dynamic interplay between 

skin barrier function, 

immune responses and 

environmental stressors that 

determines AD pathogenesis 

Preventive effects of emollients 

against AD progression (shown 

by clinical trials). Synergistic 

effects of environmental (eg. 

microbiome) and genetic (eg. 

FLG) risk factors on AD 

progression (shown by mice 

experiments with ovalbumin 

challenge or dose-dependent 

effects of FLG deficiency) 

54
 

A hybrid model of treatment 

effects of corticosteroids and 

emollients on AD 

pathogenesis and 

exploration of optimal 

regimes for induction of 

remission and maintance of 

remission 

Poor adherence to the suggested 

optimal treatment schedule 

leads to higher treatment doses. 

Application of corticosteroids for 

2 consecutive days per week is 

optimal for maintenance period 

55
 

Gene 

regulatory 

network 

model 

Understanding of 

gene regulatory 

mechanisms 

behind disease 

processes 

Identification of 

therapeutic 

targets, and 

their 

mechanisms, at 

the gene 

regulation level.  

Models 

developed 

based on 

published 

genetic 

interactions.  

Stochastic Petri Net model of 

Interferon regulatory factors 

gene regulatory network in 

response to in vitro 

treatment of Langerhans 

cells (LC) with TNFα and TSLP 

In vitro experiments validated 

predictions that LCs’ ability to 

present a peptide is altered by 

cytokine milieu and that PI3Kg 

inhibitor reduces the LC’s ability 

to induce Th1 responses  

57
 

Pathway 

models 

Understanding of 

disease 

mechanisms 

Identification of 

therapeutic 

targets, and 

their 

mechanisms 

Models 

developed 

based on 

published 

pathways. 

A pathway model including 

35 manually-curated skin-

specific pathways and 2600+ 

genes.  

Pathway enrichment analysis 

using transcriptomic datasets of 

10 AD patients treated with 

betamethasone valerate and 

pimecrolimus predicted 

mechanism of action of both 

drugs on human skin 

58
 

Population 

PK/PD 

models 

Understanding of 

differences and 

variability in 

pharmacological 

effects among a 

target population 

from clinical trials 

data 

Prediction of 

optimal dose 

regimen. Testing 

effects of weight, 

gender etc. 

Requires a 

large clinical 

data to have 

sufficient 

predictive 

power 

 

PK/PD model for serum 

nemolizumab and pruritus 

VAS developed from 299 

patients’ time course data 

An appropriate flat dose 

regimen that is independent of 

body weights 

59
 

Two compartment PK model 

for dupilumab developed 

from data of 197 healthy 

volunteers and AD patients 

from 6 studies 

Production rate of IL4Ra is 

similar for AD patients and 

normal volunteers, and does 

not change over time 

60
 

Machine 

learning 

predictive 

models 

Unbiased analyses 

of differences 

between disease 

and non-disease 

(including 

treated) tissue/ 

patients and 

prediction of 

clinical outcomes 

(prognostic and 

therapeutic) 

Identification of 

disease and 

therapeutic 

targets. Findings 

can feed into 

mechanistic 

models 

Causative 

mechanisms 

remain largely 

unknown.  

Machine 

learning 

applications to 

atopic eczema 

relatively 

limited at 

present 

Piecewise linear mixed 

models to predict EASI scores 

at 3 future timepoints from 

baseline biomarkers. 

Developed from data of 150 

serum biomarkers measured 

in 193 AD patients   

Combination of TARC, IL-22 and 

sIL-2R provides a good predictor 

for future EASI  

61
 

 

Multivariate logistic 

regression model to identify 

predictors of long-term 

response to topical 

maintenance treatment in AD 

on 169 patients. 

Serum total IgE (rather than the 

initial severity) is the most 

important factor predicting a 

good long-term treatment 

outcome 

62
 

 385 
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Table 1. Genetic disease models of AD 

Genetic disease Gene and mutation type(s) Phenotype(s) Mechanistic insights Clinical utility    Limitations Pathway relevance 
for drug 
development 

Refs. 

Skin barrier 

dysfunction 

       

 
Ichthyosis vulgaris (IV) 
 
 
 
 
 
Generalised peeling 
skin 
 
 
 
AD and eczema 
herpeticum 
 
 
Netherton syndrome 
 

 
FLG 

Loss of function mutations 
semi-dominant in IV and 
complex trait in AD 
 
 
CDSN 
Loss of function mutation 
autosomal recessive 
 
 
IFNGR1 
Loss of function mutation 
Complex trait 
 
SPINK5 
Loss of function mutation 
Autosomal recessive 
 

 
Early onset, severe and persistent AD with & 
without other atopic diseases; predisposition to 
eczema herpeticum (EH) 
 
 
 
Ichthyosiform erythroderma, pruritus and food 
allergies 
 
 
 
AD and eczema herpeticum (EH) 
 
 
 
Congenital ichthyosis, severe atopic disease, 
elevated IgE, hypereosinophilia, infections 

 
Understanding that skin barrier dysfunction 
predates atopic inflammation 
 
 
 
 
Confirms the role of corneodesmosin in 
epidermal adhesion 
 
 
 
Defective systemic IFN-gamma immune 
response accounts for disseminated viral skin 
infections 
 
Single nucleotide variants associated with AD. 
Illustrates role of epidermal protease 
inhibitors and kallikrein proteases in 
regulating epidermal barrier function 

 
Illustrates importance of 
barrier repair 
 
 
 
 
Understanding that skin 
barrier dysfunction predates 
atopic inflammation 
 
Helps to explain why a 
subset of AD patients suffer 
recurrent EH 
 
Understanding that skin 
barrier dysfunction predates 
atopic inflammation 
 

 
Molecular mechanisms and 
control pathways remain 
unclear 
 
 
 
 
 
 
 
 
Does not explain all cases of 
EH 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Protease inhibitors 

 
1, 2

 
 
 
 
 
 
3
 

 
 
 
 
4
 

 
 
 
5
 

Systemic atopic inflammation  
 

     
 

 
Atopic disease 
 
 
 
Severe atopic disease 
 
 
 
 

 
IL4RA 
Gain of function 
Complex trait 
 
CARD11 

Heterozygous mutations  
Loss of function and 
dominant negative effect 

 
Elevated IgE with & without AD  
 
 
 
Severe AD with & without infection 

 
Mutation found in severe cases is also a 
common risk allele in the population 
 
 
Illustrates importance of lymphocyte 
receptor signalling 

 
Evidence of role for IL-4 in 
atopic inflammation 
 
 
mTORC1 and IFN-gamma 
production defects can be 
partially rescued by 
glutamine supplementation 

 
 
 
 
 
Unclear whether this 
mechanism plays a role in 
prevalent AD 

 
IL-4RA 
 
 
 
NFKB and MALT1 

 
6
 

 
 
 
7
 

Skin inflammation and gastrointestinal inflammation       
 

 
SAM (Severe 
dermatitis, multiple 
Allergies and 
Metabolic wasting) 
 
SAM 
 
 

 
DSG1 
Homozygous loss of 
function mutations 
 
 
DSP 
Heterozygous mutation 
 

 
Ichthyosiform erythroderma, atopic disease and 
failure to thrive 
 
 
 
Ichthyosiform erythroderma, atopic disease and 
failure to thrive 

 
DSG1 mutations lead to loss of cell-cell 
adhesion in epidermis 
 
 
 
DSP mutations result in disrupted keratin 
filament attachment to desmosomes 

 
Structural epidermal defects 
lead to atopic inflammation 
 
 
Structural epidermal defects 
lead to atopic inflammation 
 

 
 
 
 
 
 
Other DSP mutations cause 
different phenotypes without 
atopic manifestations 
 

  
8
 

 
 
 
 
9
 

Immunodeficiency syndromes       
 

 
Hyper-IgE 
 
 
 
 
 
 
 
Omenn syndrome 
 
 
 
 
 
Hyper-IgE like 
syndrome 
 
 
Wiskott-Aldrich 
 
 
  

IPEX and IPEX-like 
syndromes 

 
STAT3 
Dominant negative 
mutations 
 
DOCK8 
Autosomal recessive loss of 
function mutations 
 
Hypomorphic missense 
mutations in a range of 
genes involved T and B cell 
development eg. RAG1, 
RAG2 
 
PGM3 

Autosomal recessive loss of 
function mutations 
 
WAS 
X-linked mutations 
 
 
FOXP3, MALT1, IL2RA, 
CTLA-4  

Autosomal recessive 

 
AD-like skin inflammation, elevated IgE, 
immunodeficiency leading to infection 
 
 
AD-like skin inflammation, elevated IgE, 
immunodeficiency leading to infection 
 
 
AD-like skin inflammation, elevated IgE, 
immunodeficiency leading to infection 
 
 
 
 
AD-like skin inflammation, atopy, immune 
deficiency, autoimmunity and neurocognitive 
impairment 
 
AD-like skin inflammation, severe 
immunodeficiency, autoimmunity and 
malignancy 
 
Immune dysregulation, polyendocrinopathy, 
enteropathy and AD-like skin inflammation 
 

 
Illustrates role of STAT3 in signal transduction 
for multiple cytokines 
 
 
Aberrations of T cell and NK cell migration to 
skin can cause atopic inflammation 
 
 
Skin inflammation can occur in the absence of 
adaptive immunity, also seen in mice 
 
 
 
 
Role of glycosylation in immune regulation 
and systemic atopy 
 
 
Systemic imbalances in Treg populations can 
drive cutaneous AD like inflammation 
 
 
Role of autoimmunity in AD-like inflammation 

 
Biologic treatments 
targeting IgE have limited 
clinical efficacy for AD 
 
Antiviral and antibacterial 
prophylaxis, 
immunoglobulin 
replacement and HSCT 
 
 
 
 
 
 
 
 
 
 
Requires HSCT 
 
 
 
Immunosuppressive 
treatment or HSCT 

 
Immunodeficiency is not a 
prominent feature of AD 

 
STAT6: downstream 
of JAKs in Th2 
inflammation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OX40 
 
 
 
FOXP3 as possible 
target for gene 
editing 

 
10

 
 
 
 
11

 
 
 
 
12

 
 
 
 
 
13

 
 
 
 
 
14

 
 
 
 
15, 16
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Table S2. Human In vivo Models of AD 

Atopy Patch Test System Interplay/ 
Application 

Key Findings Scientific Merit/ 
Clinical Relevance 

Limitations Reproducibility Refs. 

APT: clinical usage 
 

 Reviewed in: EAACI position paper     (2) 

 
 
Epidemiology 
 
 
 
Validity/relevance 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reproducibility 

 
 
Frequency of patch test reactions to 
inhalant allergens in AD patients (n=56) 
 
Comparison of APT and SPT in children 
with AD (n=253) 
 
Comparison of APT and LTT in AD 
patients (n=96) 
 
 
Comparing AD groups: with and w/o 
clinical symptoms (n=79) 
 
 
Comparing APT, SPT, and sIgE with food 
challenge in children with AD 
 
 
Reproducibility of APT reactions in AD 
patients (n=16) 
 
Different vehicles and allergen 
concentrations (AD patients) 
 

 
 
D. farinae: 33.9%; D. pteronyssinus: 35.8%; American 
cockroach: 21.8% 
 
 
APT: higher specificity (69-92% depending on the 
allergen) than SPT (44-53%) and IgE levels (42-66%) 
 
48% of aeroallergen sensitized patients had a positive 
APT; this correlated highly significant with a positive 
LTT 
 
66.7% of cases with and 10.5% of cases without a 
predictive history of exacerbations during pollen 
season 
 
In a large cohort (n=1007 APT, 873 challenges), APT to 
food allergens added only a small predictive value to 
SPT and sIgE 
 
15/16 (94%) patients had a reproducible APT reaction 
 
Petrolatum as a vehicle and allergen concenrations of 
at least 1000 protein nitrogen units/ml give best 
outcome 
 

 
 
Positive APT reactions occur frequently in AD patients 
 
 
 
APT may be useful to diagnose clinically relevant 
sensitizations to inhalant allergens 
 
APT reactions are significantly correlated to allergen 
specific lymphocyte proliferation 
 
 
APT indicates clinically relevant positive reactions to 
inhalant allergens 
 
 
APT to food allergens is less robust compared to APT to 
inhalant allergens; higher specificity and lower 
sensitivity than SPT and sIgE 
 
APT results are highly reproducible 
 
 
Validity of APT reactions depends on vehicles and 
allergen concentrations 
 

 
 
Small cohort 
 
 
 
Clinical relevance mainly 
evaluated by history only 
 
 
 
 
 
Only investigated grass pollen, 
small cohort 
 
 
 
 
 
 
Small cohort 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Several studies with similar 
results, e.g. (1) 
 
 
 
 

 
 
(1) 
 
 
 
(2) 
 
 
(3) 
 
 
 
(4) 
 
 
 
(5) 
 
 
 
(6) 
 
 
(7) 

APT: immunological 
relevance 
 

 Reviewed in:  
 

   (8, 9) 
 

 
Th2 immunity 
 
 
 
 
 
 
 
 
Dynamics/kinetics of 
immune response 
 
 
 
 
 
 
 
 
 
Specificity 

 
Tissue cell culture from APT reactions 
(AD patients) 
 
Comparison of APT reactions to lesional 
AD in AD patients 
 
Gene expression in lesional APT skin 
(AD patients) 
 
Histology/ gene expression/ TCC from 
dust mite APT in AD patients 
 
Interaction of allergen and microbiota 
in AD patients 
 
 
Immune-histochemistry and flow 
cytometry of DCs in AD (n=66) 
compared to CD (n=12) 
 
APT in patients with co-existing 
psoriasis and AD (n=8) 
 
APT to autoantigens in AD patients 

 
APT reactions contain Der p specific Th2 cells 
 
 
Dust mite induces a Th2/Th9 skewing, but also 
Th17/Th22 activation 
 
APT to different food allergens induces Th2, Th17 
responses and IL-33 
 
Early APT reactions are mediated by Th2, while other 
T cell responses occur in the course of the reaction 
 
Superantigens cause increased APT reaction 
Superantigens induce IL-17 and IL-22 in APT reactions 
 
Inflammatory epidermal dendritic cells migrate early 
in APT reactions where they persist; FceRI is 
associated to extrinsic AD 
 
Dust mite induces a Th2 mediated eczematous 
reaction in sensitized psoriasis patients 
 
AD patients with T cell-mediated autoimmunity 
against manganese superoxide show APT reactivity 
 

 
APT can be used as a model for acute AD 
 
 
Reaction to dust mite does not fully reflect human AD, 
e.g. regarding barrier 
 
APT reflects a type 2 dominated immune response 
 
 
APT reflects acute immunity as well as later stages of AD 
immunity 
 
Microbial products influence AD 
 
 
 
APT is a useful model to investigate DC subtypes 
 
 
 
At least a subgroup of AD is caused by adaptive 
immunity 
 
Identification of manganese superoxide as autoantigen 
in AD 
 

 
Early proof of concept study 
 
 
n=15 
 
 
 
 
 
 
 
 
 
 
 
 
No functional analysis 
 
 
 
Special, small  cohort of 
patients 

 
Reproduced in several 
studies, also for other 
allergens 
 
 
 
 
 
 
Highly reproducible also 
for other allergens, e.g. 
(10, 11) 
Reproduced in (12) 
 
 
 
 
 
 
 
Reproduced in (13) 
 
 
Reproduced for  
Malassezia sympodialis 
thioredoxin (14) 
 

 
(15) 
 
 
(16) 
 
 
(17) 
 
 
(18) 
 
 
(19) 
(20, 
21) 
 
(22) 
 
 
 
(23) 
 
 
(24) 

Contact allergens System Interplay/ 
Application 

Key Findings Scientific Merit/ 
Clinical Relevance 

Limitations Reproducibility Refs. 

Patch testing: clinical 
usage 
 

 Reviewed in: 
 

   (25, 
26) 
 

 
Epidemiology 
 
 
Immunological 
relevance 
 
 
 

 
Patch tests to haptens in AD patients 
 
 
Patch tests to experimental haptens in 
AD patients 
 
 
Gene expression following patch tests 

 
AD patients with severe disease have lower 
prevalence of contact allergy. 
 
AD patients have attenuated ACD reactions compared 
to controls and in a severity-dependent manner. 
 
Nickel induces Th1/Th17 responses, fragrances induce 
a Th2/Th22 immune response 

 
Clinically relevant ACD in AD patients needs to be ruled 
out by patch testing.  
 
Immune bias in AD reduces the ability to amount a 
contact allergic response. 
 
 
Haptens induce distinct molecular profiles; some of 

 
No definite information about 
severity 
 
 
 
 
 
 

 
Reproduced in a large 
meta-analysis 
 
Highly reproducible, e.g. 
(27, 28) 
 
 
 

 
(29) 
 
 
(30) 
 
 
 
(31) 
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 to different haptens (n=24 ACD 

patients w/o AD) 
 
 
Patch tests in AD patients (n=18) and 
healthy volunteers (n=10) 
 
 
 
Repetitive application of hapten 

 
 
 
DNCB-specific immune responses in controls were 
Th1 dominated; Th1 immunity was less in AD, but 
here a specific and stable Th2 immunity was induced 
towards DNCB 
 
Repetitive hapten challenge caused a switch in 
immune response towards Th2 immunity including 
barrier damage 

them might mimic AD 
 
 
 
AD patients show a Th2 skewed ACD reaction 
 
 
 
 
Immune responses towards a hapten might change after 
repetitive challenge 

 
 
 
 
Small cohort (n=16 AD 
patients); experimental hapten 
 
 
 
Murine study 

 
 
 
 
 
 

 
 
 
 
(32) 
 
 
 
 
(33) 
 
 

Other challenge 
models 

System Interplay/ 
Application 

Key Findings Scientific Merit/ 
Clinical Relevance 

Limitations Reproducibility Refs. 

 
 
Aero-challenge 
 
 
Treatment 
Standardization 
 
 
 
 
 
Trigger challenge 
 
 

 
 
Pollen chamber challenge of sensitized 
AD patients 
 
Application of vehicles and/ or topical 
treatments in AD patients 
 
 
Application of petrolatum (n=13 AD 
patients, n=36 healthy volunteers) 
 
Application of established AD triggers 
(AD patients) 

 
 
AD patients sensitized to grass pollen reacted with 
worsening of AD symptoms and biomarkers 
 
Standardized application of different topical 
treatments, assessment of TSS, TEWL, and biomarkers 
 
Petrolatum enhances antimicrobial peptides and 
epidermal barrier genes 
 
Hard water increases IL-4, IL-10 and IFN-gamma   

 
 
IgE might play a role in AD 
 
 
Approach of standardized clinical assessment of topical 
treatments 
 
 
Barrier restoration might also repair immune 
abnormalities in AD 
 
Domestic hard water exposure during infancy increase 
risk of AD. 

 
 
No direct causal link to IgE 
 
 
 
 
 
 
No evidence for a specific effect 
of petrolatum 
 
Experimental design does not 
mimic real world exposure 
 

  
 
(34) 
 
 
(35) 
 
 
 
(36) 
 
 
(37) 

 

Abbreviations: APT: Atopy Patch Test; SPT: Skin Prick Test; LTT: Lymphocyte Transformation Test; ACD: allergic contact dermatitis; TSS: total sign score; TEWL: transepidermal water loss; DC: dendritic cell; CD: contact dermatitis 

 

 

 

 

1. Visitsunthorn N, Chatpornvorarux S, Pacharn P, Jirapongsananuruk O. Atopy patch test in children with atopic dermatitis. Ann Allergy Asthma Immunol. 2016;117(6):668-73. Epub 2016/12/17. doi: 10.1016/j.anai.2016.09.446. PubMed PMID: 

27979025. 

2. Darsow U, Vieluf D, Berg B, Berger J, Busse A, Czech W, Heese A, Heidelbach U, Peters KP, Przybilla B, Richter G, Rueff F, Werfel T, Wistokat-Wulfing A, Ring J. Dose response study of atopy patch test in children with atopic eczema. Pediatr Asthma 

Aller. 1999;13(3):115-22. doi: DOI 10.1089/pai.1999.13.115. PubMed PMID: WOS:000083849700002. 

3. Wistokat-Wulfing A, Schmidt P, Darsow U, Ring J, Kapp A, Werfel T. Atopy patch test reactions are associated with T lymphocyte-mediated allergen-specific immune responses in atopic dermatitis. Clin Exp Allergy. 1999;29(4):513-21. Epub 1999/04/15. 

PubMed PMID: 10202366. 

4. Darsow U, Behrendt H, Ring J. Gramineae pollen as trigger factors of atopic eczema: evaluation of diagnostic measures using the atopy patch test. Brit J Dermatol. 1997;137(2):201-7. doi: DOI 10.1046/j.1365-2133.1997.18061889.x. PubMed PMID: 

WOS:A1997XR05300007. 

5. Mehl A, Rolinck-Werninghaus C, Staden U, Verstege A, Wahn U, Beyer K, Niggemann B. The atopy patch test in the diagnostic workup of suspected food-related symptoms in children. J Allergy Clin Immunol. 2006;118(4):923-9. Epub 2006/10/13. doi: 

10.1016/j.jaci.2006.07.003. PubMed PMID: 17030247. 

6. Weissenbacher S, Bacon T, Targett D, Behrendt H, Ring J, Darsow U. Atopy patch test--reproducibility and elicitation of itch in different application sites. Acta Derm Venereol. 2005;85(2):147-51. Epub 2005/04/13. doi: N68HJLKMHGC6A2X8 [pii] 

10.1080/00015550410024418. PubMed PMID: 15823910. 

7. Darsow U, Vieluf D, Ring J. Atopy patch test with different vehicles and allergen concentrations: an approach to standardization. J Allergy Clin Immunol. 1995;95(3):677-84. Epub 1995/03/01. doi: S0091-6749(95)70172-9 [pii]. PubMed PMID: 7897150. 

8. Werfel T, Allam JP, Biedermann T, Eyerich K, Gilles S, Guttman-Yassky E, Hoetzenecker W, Knol E, Simon HU, Wollenberg A, Bieber T, Lauener R, Schmid-Grendelmeier P, Traidl-Hoffmann C, Akdis CA. Cellular and molecular immunologic mechanisms in 

patients with atopic dermatitis. J Allergy Clin Immunol. 2016;138(2):336-49. Epub 2016/08/09. doi: 10.1016/j.jaci.2016.06.010. PubMed PMID: 27497276. 

9. Kerschenlohr K, Decard S, Darsow U, Ollert M, Wollenberg A. Clinical and immunologic reactivity to aeroallergens in "intrinsic" atopic dermatitis patients. J Allergy Clin Immunol. 2003;111(1):195-7. Epub 2003/01/18. doi: S0091674902912807 [pii]. 

PubMed PMID: 12532120. 

10. Thepen T, Langeveld-Wildschut EG, Bihari IC, van Wichen DF, van Reijsen FC, Mudde GC, Bruijnzeel-Koomen CA. Biphasic response against aeroallergen in atopic dermatitis showing a switch from an initial TH2 response to a TH1 response in situ: an 

immunocytochemical study. J Allergy Clin Immunol. 1996;97(3):828-37. Epub 1996/03/01. doi: S0091674996000577 [pii]. PubMed PMID: 8613640. 

11. Eyerich K, Huss-Marp J, Darsow U, Wollenberg A, Foerster S, Ring J, Behrendt H, Traidl-Hoffmann C. Pollen grains induce a rapid and biphasic eczematous immune response in atopic eczema patients. Int Arch Allergy Immunol. 2008;145(3):213-23. doi: 

10.1159/000109290. PubMed PMID: 17914273. 

12. Niebuhr M, Gathmann M, Scharonow H, Mamerow D, Mommert S, Balaji H, Werfel T. Staphylococcal alpha-toxin is a strong inducer of interleukin-17 in humans. Infect Immun. 2011;79(4):1615-22. Epub 2011/01/20. doi: IAI.00958-10 [pii] 

10.1128/IAI.00958-10. PubMed PMID: 21245272; PMCID: 3067557. 

13. Quaranta M, Knapp B, Garzorz N, Mattii M, Pullabhatla V, Pennino D, Andres C, Traidl-Hoffmann C, Cavani A, Theis FJ, Ring J, Schmidt-Weber CB, Eyerich S, Eyerich K. Intraindividual genome expression analysis reveals a specific molecular signature of 

psoriasis and eczema. Science translational medicine. 2014;6(244):244ra90. doi: 10.1126/scitranslmed.3008946. PubMed PMID: 25009230. 

14. Balaji H, Heratizadeh A, Wichmann K, Niebuhr M, Crameri R, Scheynius A, Werfel T. Malassezia sympodialis thioredoxin-specific T cells are highly cross-reactive to human thioredoxin in atopic dermatitis. J Allergy Clin Immunol. 2011;128(1):92-9 e4. 

Epub 2011/04/15. doi: S0091-6749(11)00377-0 [pii] 

10.1016/j.jaci.2011.02.043. PubMed PMID: 21489611. 

15. Sager N, Feldmann A, Schilling G, Kreitsch P, Neumann C. House Dust Mite Specific T-Cells in the Skin of Subjects with Atopic-Dermatitis - Frequency and Lymphokine Profile in the Allergen Patch Test. J Allergy Clin Immun. 1992;89(4):801-10. doi: Doi 

10.1016/0091-6749(92)90434-4. PubMed PMID: WOS:A1992HN86000004. 

16. Malik K, Ungar B, Garcet S, Dutt R, Dickstein D, Zheng X, Xu H, Estrada YD, Suarez-Farinas M, Shemer A, Krueger JG, Guttman-Yassky E. Dust mite induces multiple polar T cell axes in human skin. Clin Exp Allergy. 2017;47(12):1648-60. Epub 2017/10/05. 

doi: 10.1111/cea.13040. PubMed PMID: 28977706. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
17. Ungar B, Correa da Rosa J, Shemer A, Czarnowicki T, Estrada YD, Fuentes-Duculan J, Xu H, Zheng X, Peng X, Suarez-Farinas M, Nowak-Wegrzyn A, Sampson HA, Krueger JG, Guttman-Yassky E. Patch testing of food allergens promotes Th17 and Th2 

responses with increased IL-33: a pilot study. Exp Dermatol. 2017;26(3):272-5. Epub 2016/08/05. doi: 10.1111/exd.13148. PubMed PMID: 27488305. 

18. Grewe M, Walther S, Gyufko K, Czech W, Schopf E, Krutmann J. Analysis of the cytokine pattern expressed in situ in inhalant allergen patch test reactions of atopic dermatitis patients. J Invest Dermatol. 1995;105(3):407-10. Epub 1995/09/01. PubMed 

PMID: 7665922. 

19. Langer K, Breuer K, Kapp A, Werfel T. Staphylococcus aureus-derived enterotoxins enhance house dust mite-induced patch test reactions in atopic dermatitis. Exp Dermatol. 2007;16(2):124-9. Epub 2007/01/16. doi: EXD523 [pii] 

10.1111/j.1600-0625.2006.00523.x. PubMed PMID: 17222226. 

20. Eyerich K, Pennino D, Scarponi C, Foerster S, Nasorri F, Behrendt H, Ring J, Traidl-Hoffmann C, Albanesi C, Cavani A. IL-17 in atopic eczema: linking allergen-specific adaptive and microbial-triggered innate immune response. J Allergy Clin Immunol. 

2009;123(1):59-66 e4. doi: 10.1016/j.jaci.2008.10.031. PubMed PMID: 19056110. 

21. Niebuhr M, Scharonow H, Gathmann M, Mamerow D, Werfel T. Staphylococcal exotoxins are strong inducers of IL-22: A potential role in atopic dermatitis. J Allergy Clin Immunol. 2010;126(6):1176-83 e4. doi: 10.1016/j.jaci.2010.07.041. PubMed 

PMID: 20864149. 

22. Kerschenlohr K, Decard S, Przybilla B, Wollenberg A. Atopy patch test reactions show a rapid influx of inflammatory dendritic epidermal cells in patients with extrinsic atopic dermatitis and patients with intrinsic atopic dermatitis. J Allergy Clin 

Immunol. 2003;111(4):869-74. Epub 2003/04/22. doi: S0091674903007115 [pii]. PubMed PMID: 12704371. 

23. Eyerich S, Onken AT, Weidinger S, Franke A, Nasorri F, Pennino D, Grosber M, Pfab F, Schmidt-Weber CB, Mempel M, Hein R, Ring J, Cavani A, Eyerich K. Mutual antagonism of T cells causing psoriasis and atopic eczema. N Engl J Med. 2011;365(3):231-

8. doi: 10.1056/NEJMoa1104200. PubMed PMID: 21774711. 

24. Schmid-Grendelmeier P, Fluckiger S, Disch R, Trautmann A, Wuthrich B, Blaser K, Scheynius A, Crameri R. IgE-mediated and T cell-mediated autoimmunity against manganese superoxide dismutase in atopic dermatitis. J Allergy Clin Immunol. 

2005;115(5):1068-75. Epub 2005/05/04. doi: S0091674905003398 [pii] 

10.1016/j.jaci.2005.01.065. PubMed PMID: 15867868. 

25. Chen JK, Jacob SE, Nedorost ST, Hanifin JM, Simpson EL, Boguniewicz M, Watsky KL, Lugo-Somolinos A, Hamann CR, Eberting CL, Silverberg JI, Thyssen JP. A Pragmatic Approach to Patch Testing Atopic Dermatitis Patients: Clinical Recommendations 

Based on Expert Consensus Opinion. Dermatitis. 2016;27(4):186-92. Epub 2016/07/20. doi: 10.1097/DER.0000000000000208. PubMed PMID: 27427820. 

26. Thyssen JP, Johansen JD, Linneberg A, Menne T, Engkilde K. The association between contact sensitization and atopic disease by linkage of a clinical database and a nationwide patient registry. Allergy. 2012;67(9):1157-64. Epub 2012/07/07. doi: 

10.1111/j.1398-9995.2012.02863.x. PubMed PMID: 22765654. 

27. Correa da Rosa J, Malajian D, Shemer A, Rozenblit M, Dhingra N, Czarnowicki T, Khattri S, Ungar B, Finney R, Xu H, Zheng X, Estrada YD, Peng X, Suarez-Farinas M, Krueger JG, Guttman-Yassky E. Patients with atopic dermatitis have attenuated and 

distinct contact hypersensitivity responses to common allergens in skin. J Allergy Clin Immunol. 2015;135(3):712-20. Epub 2015/01/15. doi: 10.1016/j.jaci.2014.11.017. PubMed PMID: 25583101. 

28. Rees J, Friedmann PS, Matthews JNS. Contact Sensitivity to Dinitrochlorobenzene Is Impaired in Atopic Subjects - Controversy Revisited. Archives of Dermatology. 1990;126(9):1173-5. doi: DOI 10.1001/archderm.126.9.1173. PubMed PMID: 

WOS:A1990DY99300005. 

29. Hamann CR, Hamann D, Egeberg A, Johansen JD, Silverberg J, Thyssen JP. Association between atopic dermatitis and contact sensitization: A systematic review and meta-analysis. Journal of the American Academy of Dermatology. 2017;77(1):70-8. doi: 

10.1016/j.jaad.2017.02.001. PubMed PMID: WOS:000403205000019. 

30. Uehara M, Sawai T. A Longitudinal-Study of Contact Sensitivity in Patients with Atopic-Dermatitis. Archives of Dermatology. 1989;125(3):366-8. doi: DOI 10.1001/archderm.125.3.366. PubMed PMID: WOS:A1989T656500003. 

31. Dhingra N, Shemer A, Correa da Rosa J, Rozenblit M, Fuentes-Duculan J, Gittler JK, Finney R, Czarnowicki T, Zheng X, Xu H, Estrada YD, Cardinale I, Suarez-Farinas M, Krueger JG, Guttman-Yassky E. Molecular profiling of contact dermatitis skin identifies 

allergen-dependent differences in immune response. J Allergy Clin Immunol. 2014;134(2):362-72. doi: 10.1016/j.jaci.2014.03.009. PubMed PMID: 24768652. 

32. Newell L, Polak ME, Perera J, Owen C, Boyd P, Pickard C, Howarth PH, Healy E, Holloway JW, Friedmann PS, Ardern-Jones MR. Sensitization via Healthy Skin Programs Th2 Responses in Individuals with Atopic Dermatitis. Journal of Investigative 

Dermatology. 2013;133(10):2372-80. doi: 10.1038/jid.2013.148. PubMed PMID: WOS:000324899100014. 

33. Man MQ, Hatano Y, Lee SH, Man M, Chang S, Feingold KR, Leung DYM, Holleran W, Uchida Y, Elias PM. Characterization of a hapten-induced, murine model with multiple features of atopic dermatitis: Structural, immunologic, and biochemical changes 

following single versus multiple oxazolone challenges. Journal of Investigative Dermatology. 2008;128(1):79-86. doi: 10.1038/sj.jid.5701011. PubMed PMID: WOS:000251613600012. 

34. Werfel T, Heratizadeh A, Niebuhr M, Kapp A, Roesner LM, Karch A, Erpenbeck VJ, Losche C, Jung T, Krug N, Badorrek P, Hohlfeld JM. Exacerbation of atopic dermatitis on grass pollen exposure in an environmental challenge chamber. J Allergy Clin 

Immunol. 2015;136(1):96-103 e9. doi: 10.1016/j.jaci.2015.04.015. PubMed PMID: 26044854. 

35. Guttman-Yassky E, Ungar B, Malik K, Dickstein D, Suprun M, Estrada YD, Xu H, Peng X, Oliva M, Todd D, Labuda T, Suarez-Farinas M, Bissonnette R. Molecular signatures order the potency of topically applied anti-inflammatory drugs in patients with 

atopic dermatitis. J Allergy Clin Immunol. 2017;140(4):1032-42 e13. Epub 2017/02/28. doi: 10.1016/j.jaci.2017.01.027. PubMed PMID: 28238742. 

36. Czarnowicki T, Malajian D, Khattri S, Correa da Rosa J, Dutt R, Finney R, Dhingra N, Xiangyu P, Xu H, Estrada YD, Zheng X, Gilleaudeau P, Sullivan-Whalen M, Suarez-Farinas M, Shemer A, Krueger JG, Guttman-Yassky E. Petrolatum: Barrier repair and 

antimicrobial responses underlying this "inert" moisturizer. J Allergy Clin Immunol. 2016;137(4):1091-102 e7. Epub 2015/10/04. doi: 10.1016/j.jaci.2015.08.013. PubMed PMID: 26431582. 

37. Engebretsen KA, Kezic S, Jakasa I, Hedengran A, Linneberg A, Skov L, Johansen JD, Thyssen JP. Effect of atopic skin stressors on natural moisturizing factors and cytokines in healthy adult epidermis. Br J Dermatol. 2018. Epub 2018/02/28. doi: 

10.1111/bjd.16487. PubMed PMID: 29485689. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Supplementary Table 1. Human In vitro Models of AD 

2D Models System Interplay/Application Key Findings Scientific Merit/Clinical Relevance Limitations Ref 

Patient-derived cells Epidermis�Immune AD HEK vs. NHEK: ↑GM-CSF ; conditioned media from AD keratinocytes induced PBMC 

proliferation 

GM-CSF associated with population-specific AD 

pathogenesis and severity (1-3) 

No epidermal characteristics assessed; small 

patient cohort (n = 8) 

(4) 

FLG knockdown (KD) Barrier�Immune/Epidermal 

Differentiation 

NHEK: lentiviral KD; ↑Th2 cytokines: IL-2/4/5/13; ↓IFNγ; ↓KRTs, ↓IVL, ↓TGM1, ↑Lor FLG KD induces keratinocyte cytokine release 

(5); FLG changes are associated with AD 

No assessment of lipids or barrier function; no 

rescue experiment 

(6) 

IL-4/IL-13 treatment Immune�Barrier NHEK: ↓FLG mRNA and protein Cytokines known to drive AD No epidermal characteristics assessed (7) 

AD drug discovery 

model 

Barrier Compound library screened by FLG reporter assay in HaCaT cells; NHEK: ↑ FLG mRNA and 

promoter activity by compound JTC801; ↑FLG in 3D and explant cultures 

JTC801 ↑FLG and suppressed AD-like 

phenotype in NC/Nga mice 

Only FLG taken into consideration as a target (8) 

Immune cells only Immune TSLP receptor is increased in AD-derived skin-associated Th2 cells; TSLP increases IL-4 

producing T-cells 

TSLP highly expressed in AD keratinocytes and 

known to trigger dendritic cells (9) 

No epidermal component (10) 

3D Models System Interplay/Application Key Findings Scientific Merit/Clinical Relevance Limitations Ref 

FLG KD Models   FLG is relevant in pathogenesis of AD (11) FLG loss associated with 20-50% of AD (12); 

FLG KD does not always cause AD-like 

phenotype in vitro (13, 14) 

 

Human epidermal 

equivalent (HEE)
a
 

Barrier�Immune/Epidermal 

Differentiation 

NHEK: lentiviral shRNA KD; epidermal thickening; FLG loss associated with changes in 

proteases, inflammatory, and stress-related pathways based on proteomic profiling 

Findings validated in AD patient samples; data 

can enhance systems biology modeling of AD 

No evidence changes in protein expression 

underlie AD phenotype 

(15) 

Barrier�Epidermal 

Differentiation 

NHEK: lentiviral shRNA KD; hypogranulosis; ↓corneodesmosomes; ↓NMF; ↑barrier 

permeability; ↑UV sensiDvity; altered differenDaDon 

FLG loss is clinically associated with barrier 

dysfunction; similar results with FLG2 KD (16) 

Epidermal thinning; immune component not 

assessed; no rescue experiment 

(17) 

 

Human skin 

equivalent (HSE)
b
 

Barrier�Epidermal 

Differentiation 

NHEK: siRNA KD; hypogranulosis; ↑barrier permeability; ↑UV sensitivity FLG loss is clinically associated with barrier 

dysfunction; siRNA produced similar phenotype 

in other studies (18-20) 

↔differentiation or lipid synthesis; immune 

component not assessed; no rescue 

experiment 

(21) 

FLG KD + IL-4/IL-13 

HSE 

Barrier�Immune/Epidermal 

Differentiation 

NHEK: siRNA KD; spongiosis, ↑proliferaDon; ↑epidermal thickness; ↓IVL; ↓LOR; ↓OCLN; 

↑TSLP; ↑DEFB4A 

Combination of FLG loss and immune activation Barrier function not assessed; no rescue 

experiment 

(22) 

Co-culture Models   Multiple systems contribute to AD   

CD45RO+ T-cell HSE Epidermis�Immune HaCaT: spongiosis; ↑apoptosis; ↓TEER; ↑cytokine release; ↑ICAM-1; ↑NT-4 Activated T-cells drive AD; dexamethasone or 

tacrolimus reversed 3D model phenotype 

Primary keratinocytes not used 

 

(23) 

 

FLG KD + CD4+ T-cell Immune�Epidermis� 

Immune 

NHEK: siRNA KD; ↑IL-8 and IL-6 secretion; ↑skin surface pH; ↓ IVL; ↑barrier 

permeability; ↑TSLP; ↑T-cell migration; CD4+ T-cells shift to Th2/Th22  

TSLP-dependent T-cell migration indicates direct 

T-cell/keratinocyte cross-talk 

No histological changes vs. FLG KD without T-

cells 

(24) 

AD cell-derived HSE Dermis�Epidermis�Dermis 

 

Healthy NHEK + AD Fibroblasts: ↓FLG/FLG mRNA; ↓KRT10; epidermal thickening  

AD HEK + Healthy Fibroblasts: rescues FLG, KRT10, KRT5 

Fibroblasts may mediate immune cell 

infiltration in skin (25) 

Immune component and barrier not assessed; 

AD patient samples with variable FLG status;  

(26) 

 

Nerve HSE Neurons�Epidermis NHEK: Innervated cultures alone or with substance P+CGRP neuropeptides ↑epidermal 

thickness and ↑ Ki67; AD HEK vs. NHEK: ↑innervaDon; ↑ epidermal thickness 

Increased nerve fibers in AD (27); used for drug 

discovery of neuron-modulating agents (28) 

Immune component and barrier not assessed; 

porcine dorsal root ganglia used for neurons 

(29) 

Cytokine Models   Immune modulators are relevant to AD   

IL-4-treated HSE Immune�Epidermal 

Differentiation 

N/TERT: ↑proliferaDon; ↓KRT10; ↓IVL; suprabasal integrin-β1 Assesses the effects of a single cytokine; similar 

effects on proliferation in NHEK (30) 

Primary keratinocytes not used; IL-4 alone 

shown not reduce FLG in NHEK (30) 

(31) 

IL-4/IL-13-treated 

HSE 

Immune�Barrier 

 

NHEK: spongiosis; ↑apoptosis; ↑phosphorylated STAT6; ↑CA2 mRNA; ↑NELL2 mRNA 

 

mRNA levels matched AD biopsies 

No change in psoriasis-associated genes 

Barrier not assessed; dexamethasone or 

tacrolimus did not reverse phenotype 

(32) 

 

IL-17-treated HSE Immune �Barrier/ 

Epidermal Differentiation 

NHEK: ↓TEER; ↑barrier permeability; ↓TJ proteins; SC thickening; Δ in FLG and LOR 

localization 

Loss of TJ proteins confirmed in small cohorts of 

normal and AD patients 

Changes in keratinocyte immune signaling not 

assessed 

(33) 

 

IL-31RA expression + 

IL-31-treated HSE 

Immune�Epidermal 

Differentiation 

HaCaT: ↓FLG
†
; ↓desmosomal transcripts*; ↓CASP14 mRNA*; ↓ CDSN mRNA; ↔ TJ 

proteins; ↑barrier permeability; ↑IL-1α release*   

NHEK: ↓FLG; ↑anDmicrobial pepDdes 

IL-31 expression associated with AD (34); similar 

effects seen in HaCaT cells (35) 

 

Most experiments performed with HaCaT cells (36) 

 

Cytokine cocktail-

treated HEEs 

Immune�Epidermal 

Differentiation 

 

NHEK: Cocktail: poly(I)C, TNFα, IL-4, IL-13 

↓FLG/FLG mRNA; altered differentiation and inflammation; ↑TSLP and ↑IL-8 secretion 

Transcriptomic profiling after cocktail correlates 

with AD datasets; ↓FLG with TNFα/IL-4, IL-13, 

IL-22 cocktail (37) 

Barrier function not assessed 

 

(38) 

 

NHEK: Cocktail: IL-4, IL-13, IL-25 with or without methyl-β-cyclodextrin (disrupts lipid rafts) 

hypogranulosis; spongiosis; ↓TEER; ↓FLG mRNA; ↓LOR/LOR mRNA; ↑ CA2/CA2 mRNA; 

↑NELL2 mRNA 

Effect on protein expression by cocktail 

treatment correlated with AD patient samples;  

Role of membrane lipid domains not clear in 

AD; no change in keratinocyte TSLP 

(39, 

40) 

 

NHEK: Cocktail: TNFα, IL-4, IL-13, IL-31  

spongiosis; ↑proliferaDon; altered differentiation; ↑TSLP; ↓faNy acids; ↓ceramides 

Tested cytokines alone and in combination Barrier function not assessed 

 

(30) 

 

ILs and HMGB HSE 

and HEE 

Immune�Immune/Epidermal 

Differentiation 

NHEK*: ↑epidermal alarmins (IL-33 and HMGB1) with IL-25+IFNγ; IL-25, IL-33, IL-4, or 

HMGB1 treatment ↓FLG/FLG mRNA; ↓IVL; ↓LOR; ↑proliferaDon 

Effects seen in 3 epidermal culture models epidermal thinning; barrier function not 

assessed 

(41) 

Allergy  Models      

Histamine  treatment 

HEE 

Immune �Barrier/Epidermal 

Differentiation 

NHEK: ↓ FLG/FLG mRNA*; ↓LOR/LOR mRNA*; ↓KRT10/KRT10 mRNA*; ↓DSG1; CDSN; 

↓TJ proteins; ↑barrier permeability 

Histamine mediates mast cells which are 

correlated to inflamed skin (42) 

No change in histamine-treated explant 

cultures 

(43) 

 

Explant Models      

Patient samples AD vs. normal tissue In AD explants: ↓LOR; ↓IVL; ↓desquamaDon enzymes Explants maintain AD biopsy phenotypes  Barrier function not assessed; no system 

perturbations 

(44) 

 

Cytokine cocktail Immune�Skin�Immune Cocktail: IL-4, IL-5, IL-13, TNFα; ↑TSLP release;↑IL-8; induction of dendritic cell 

maturation 

Use of skin explants and epidermal explants; 

TSLP release relevant to AD (9) 

AD skin samples not used; barrier function or 

differentiation status not tested 

(45) 

a, epidermal equivalents are 3D cultures with only keratinocytes; b, skin equivalents are 3D cultures with components of the dermis, e.g., collagen lattice and/or fibroblasts; ↑: increase, ↓: decrease, ↔: no change; *, effects observed in 2D cultures of the same 

cell type; †, effect observed in explant culture 

Abbreviations: AP-1: activator protein 1; CGRP: calcitonin gene-related peptide, CAII: carbonic anhydrase II, CASP14: caspase 14, CDSN: cormeodesmin, DSG1: desmoglein 1 FLG: filaggrin, GM-CSF, granulocyte-macrophage colony-stimulating factor, HMGB1: high-

mobility group box 1, ICAM-1: intracellular adhesion molecule 1, IFN: interferon, IL: interleukin, IVL: involucrin, KRT: keratin, LOR: loricrin, NELL2: neural epidermal growth factor–like 2, NHEK/HEK: normal human epidermal keratinocytes (primary), NMF: natural 

moisturizing factor, NT-4: neurotrophin 4 PBMC: peripheral blood mononuclear cell, STAT6: signal transducer and activator of transcription 6, TJ: tight junction, TEER: transepithelial electrical resistance, TGM1: transglutaminase 1, TSLP: thymic stromal 

lymphopoietin 
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