317 research outputs found
Atom in a coherently controlled squeezed vacuum
A broadband squeezed vacuum photon field is characterized by a complex
squeezing function. We show that by controlling the wavelength dependence of
its phase it is possible to change the dynamics of the atomic polarization
interacting with the squeezed vacuum. Such a phase modulation effectively
produces a finite range temporal interaction kernel between the two quadratures
of the atomic polarization yielding the change in the decay rates as well as
the appearance of additional oscillation frequencies. We show that decay rates
slower than the spontaneous decay rate can be achieved even for a squeezed bath
in the classic regime. For linear and quadratic phase modulations the power
spectrum of the scattered light exhibits narrowing of the central peak due to
the modified decay rates. For strong phase modulations side lobes appear
symmetrically around the central peak reflecting additional oscillation
frequencies.Comment: 4 pages, 4 figure
Analysis of Structural and Functional Differences of Glucans Produced by the Natively Released Dextransucrase of Liquorilactobacillus hordei TMW 1.1822
The properties of the glucopolymer dextran are versatile and linked to its molecular size, structure, branching, and secondary structure. However, suited strategies to control and exploit the variable structures of dextrans are scarce. The aim of this study was to delineate structural and functional differences of dextrans, which were produced in buffers at different conditions using the native dextransucrase released by Liquorilactobacillus (L.) hordei TMW 1.1822. Rheological measurements revealed that dextran produced at pH 4.0 (MW = 1.1 * 10 Da) exhibited the properties of a viscoelastic fluid up to concentrations of 10% (w/v). By contrast, dextran produced at pH 5.5 (MW = 1.86 * 10 Da) was gel-forming already at 7.5% (w/v). As both dextrans exhibited comparable molecular structures, the molecular weight primarily influenced their rheological properties. The addition of maltose to the production assays caused the formation of the trisaccharide panose instead of dextran. Moreover, pre-cultures of L. hordei TMW 1.1822 grown without sucrose were substantial for recovery of higher dextran yields, since the cells stored the constitutively expressed dextransucrase intracellularly, until sucrose became available. These findings can be exploited for the controlled recovery of functionally diverse dextrans and oligosaccharides by the use of one dextransucrase type
Control of Raman Lasing in the Nonimpulsive Regime
We explore coherent control of stimulated Raman scattering in the
nonimpulsive regime. Optical pulse shaping of the coherent pump field leads to
control over the stimulated Raman output. A model of the control mechanism is
investigated.Comment: 4 pages, 5 figure
Space-time coupling of shaped ultrafast ultraviolet pulses from an acousto-optic programmable dispersive filter
A comprehensive experimental analysis of spatio-temporal coupling effects
inherent to the acousto-optic programmable dispersive filter (AOPDF) is
presented. Phase and amplitude measurements of the AOPDF transfer function are
performed using spatially and spectrally resolved interferometry.
Spatio-temporal and spatio-spectral coupling effects are presented for a range
of shaped pulses that are commonly used in quantum control experiments. These
effects are shown to be attributable to a single mechanism: a
group-delay--dependent displacement of the shaped pulse. The physical mechanism
is explained and excellent quantitative agreement between the measured and
calculated coupling speed is obtained. The implications for quantum control
experiments are discussed.Comment: 8 pages, 6 figures; accepted for publication within JOSA
Neurogenesis from Sox2 expressing cells in the adult cerebellar cortex
We identified a rare undifferentiated cell population that is intermingled with the Bergmann glia of the adult murine cerebellar cortex, expresses the stem cell markers Sox2 and Nestin, and lacks markers of glial or neuronal differentiation. Interestingly, such Sox2(+) S100(-) cells of the adult cerebellum expanded after adequate physiological stimuli in mice (exercise), and Sox2(+) precursors acquired positivity for the neuronal marker NeuN over time and integrated into cellular networks. In human patients, SOX2(+) S100(-) cells similarly increased in number after relevant pathological insults (infarcts), suggesting a similar expansion of cells that lack terminal glial differentiation
Beta-delayed proton emission in the 100Sn region
Beta-delayed proton emission from nuclides in the neighborhood of 100Sn was
studied at the National Superconducting Cyclotron Laboratory. The nuclei were
produced by fragmentation of a 120 MeV/nucleon 112Sn primary beam on a Be
target. Beam purification was provided by the A1900 Fragment Separator and the
Radio Frequency Fragment Separator. The fragments of interest were identified
and their decay was studied with the NSCL Beta Counting System (BCS) in
conjunction with the Segmented Germanium Array (SeGA). The nuclei 96Cd, 98Ing,
98Inm and 99In were identified as beta-delayed proton emitters, with branching
ratios bp = 5.5(40)%, 5.5+3 -2%, 19(2)% and 0.9(4)%, respectively. The bp for
89Ru, 91,92Rh, 93Pd and 95Ag were deduced for the first time with bp = 3+1.9
-1.7%, 1.3(5)%, 1.9(1)%, 7.5(5)% and 2.5(3)%, respectively. The bp = 22(1)% for
101Sn was deduced with higher precision than previously reported. The impact of
the newly measured bp values on the composition of the type-I X-ray burst ashes
was studied.Comment: 15 pages, 14 Figures, 4 Table
Spontaneous Regression of Ovarian Carcinoma After Septic Peritonitis; A Unique Case Report
Despite advances in therapy, ovarian cancer remains the most lethal gynecological malignancy and prognosis has not substantially improved over the past 3 decades. Immunotherapy is a promising new treatment option. However, the immunosuppressive cancer microenvironment must be overcome for immunotherapy to be successful. Here, we present a unique case of spontaneous regression of ovarian carcinoma after septic peritonitis. A 79-year-old woman was diagnosed with stage IIIc ovarian cancer. The omental cake biopsy was complicated by sepsis. Although the patient recovered, her physical condition did not allow further treatment for her ovarian cancer. After 6 months, spontaneous regression of the tumor was observed during surgery. Analysis of the immune infiltrate in the tissues showed a shift from a pro-tumorigenic to an anti-tumorigenic immune response after sepsis. Strong activation of the immune system during sepsis overruled the immunosuppressive tumor microenvironment and allowed for a potent anti-tumor immune response. More understanding of immunological responses in cases with cancer and septic peritonitis might be crucial to identify potential new targets for immunotherapy
Recommended from our members
DNA methylation-based classification of central nervous system tumours.
Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology
The Trem2 R47H Alzheimer's risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans
BACKGROUND: The R47H variant of the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) significantly increases the risk for late onset Alzheimer's disease. Mouse models accurately reproducing phenotypes observed in Alzheimer' disease patients carrying the R47H coding variant are required to understand the TREM2 related dysfunctions responsible for the enhanced risk for late onset Alzheimer's disease. METHODS: A CRISPR/Cas9-assisted gene targeting strategy was used to generate Trem2 R47H knock-in mice. Trem2 mRNA and protein levels as well as Trem2 splicing patterns were assessed in these mice, in iPSC-derived human microglia-like cells, and in human brains from Alzheimer's patients carrying the TREM2 R47H risk factor. RESULTS: Two independent Trem2 R47H knock-in mouse models show reduced Trem2 mRNA and protein production. In both mouse models Trem2 haploinsufficiency was due to atypical splicing of mouse Trem2 R47H, which introduced a premature stop codon. Cellular splicing assays using minigene constructs demonstrate that the R47H variant induced abnormal splicing only occurs in mice but not in humans. TREM2 mRNA levels and splicing patterns were both normal in iPSC-derived human microglia-like cells and patient brains with the TREM2 R47H variant. CONCLUSIONS: The Trem2 R47H variant activates a cryptic splice site that generates miss-spliced transcripts leading to Trem2 haploinsufficiency only in mice but not in humans. Since Trem2 R47H related phenotypes are mouse specific and do not occur in humans, humanized TREM2 R47H knock-in mice should be generated to study the cellular consequences caused by the human TREM2 R47H coding variant. Currently described phenotypes of Trem2 R47H knock-in mice can therefore not be translated to humans
A prognostic neural epigenetic signature in high-grade glioma
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes
- …