38 research outputs found

    The Role of Agriculture in the UN Climate Talks

    Get PDF
    Agriculture, and consequently food security and livelihoods, is already being affected by climate change, according to latest science from the IPCC. The various strands of work already underway on agriculture within the UNFCCC process can be strengthened and made more coherent. A 2015 climate agreement should reference food production and provide the financial, technical and capacity building support for countries to devise ambitious actions for the agricultural sector. A new climate agreement should be consistent with the Sustainable Development Goal (SDG) proces

    Progress on agriculture in the UN climate talks: How COP21 can ensure a food-secure future

    Get PDF
    Agriculture, and consequently food security and livelihoods, is already being affected by climate change, according to latest science from the IPCC (Porter et al. 2014). The IPCC agrees that the world needs to produce at least 50% more food than we do today in order to meet the goal of feeding a projected 9 billion people by 2050. This must be achieved in the face of climatic variability and change, growing constraints on water and land for crops and livestock, and declining wild capture fishery stocks. Although the protection of food security lies within the core objective of the United Nations Framework Convention on Climate Change (UNFCCC) (Article 2), formal arrangements for addressing agriculture within COP21 are unlikely. CGIAR would welcome the strengthening of aspirations for food security through action on mitigation and adaptation within a new agreement. We recognise that the new climate agreement is unlikely to be prescriptive about how adaptation in agriculture is supported and how agriculture might contribute to emission cuts. These issues are addressed within countries’ INDCs and determined at national level

    Malaria mortality in Africa and Asia: evidence from INDEPTH health and demographic surveillance system sites.

    Get PDF
    BACKGROUND: Malaria continues to be a major cause of infectious disease mortality in tropical regions. However, deaths from malaria are most often not individually documented, and as a result overall understanding of malaria epidemiology is inadequate. INDEPTH Network members maintain population surveillance in Health and Demographic Surveillance System sites across Africa and Asia, in which individual deaths are followed up with verbal autopsies. OBJECTIVE: To present patterns of malaria mortality determined by verbal autopsy from INDEPTH sites across Africa and Asia, comparing these findings with other relevant information on malaria in the same regions. DESIGN: From a database covering 111,910 deaths over 12,204,043 person-years in 22 sites, in which verbal autopsy data were handled according to the WHO 2012 standard and processed using the InterVA-4 model, over 6,000 deaths were attributed to malaria. The overall period covered was 1992-2012, but two-thirds of the observations related to 2006-2012. These deaths were analysed by site, time period, age group and sex to investigate epidemiological differences in malaria mortality. RESULTS: Rates of malaria mortality varied by 1:10,000 across the sites, with generally low rates in Asia (one site recording no malaria deaths over 0.5 million person-years) and some of the highest rates in West Africa (Nouna, Burkina Faso: 2.47 per 1,000 person-years). Childhood malaria mortality rates were strongly correlated with Malaria Atlas Project estimates of Plasmodium falciparum parasite rates for the same locations. Adult malaria mortality rates, while lower than corresponding childhood rates, were strongly correlated with childhood rates at the site level. CONCLUSIONS: The wide variations observed in malaria mortality, which were nevertheless consistent with various other estimates, suggest that population-based registration of deaths using verbal autopsy is a useful approach to understanding the details of malaria epidemiology

    Mortality from external causes in Africa and Asia: evidence from INDEPTH Health and Demographic Surveillance System Sites.

    Get PDF
    BACKGROUND: Mortality from external causes, of all kinds, is an important component of overall mortality on a global basis. However, these deaths, like others in Africa and Asia, are often not counted or documented on an individual basis. Overviews of the state of external cause mortality in Africa and Asia are therefore based on uncertain information. The INDEPTH Network maintains longitudinal surveillance, including cause of death, at population sites across Africa and Asia, which offers important opportunities to document external cause mortality at the population level across a range of settings. OBJECTIVE: To describe patterns of mortality from external causes at INDEPTH Network sites across Africa and Asia, according to the WHO 2012 verbal autopsy (VA) cause categories. DESIGN: All deaths at INDEPTH sites are routinely registered and followed up with VA interviews. For this study, VA archives were transformed into the WHO 2012 VA standard format and processed using the InterVA-4 model to assign cause of death. Routine surveillance data also provide person-time denominators for mortality rates. RESULTS: A total of 5,884 deaths due to external causes were documented over 11,828,253 person-years. Approximately one-quarter of those deaths were to children younger than 15 years. Causes of death were dominated by childhood drowning in Bangladesh, and by transport-related deaths and intentional injuries elsewhere. Detailed mortality rates are presented by cause of death, age group, and sex. CONCLUSIONS: The patterns of external cause mortality found here generally corresponded with expectations and other sources of information, but they fill some important gaps in population-based mortality data. They provide an important source of information to inform potentially preventive intervention designs

    Blood Pressure and Arterial Stiffness in Kenyan Adolescents With α+Thalassemia.

    Get PDF
    BACKGROUND: Recent studies have discovered that α-globin is expressed in blood vessel walls where it plays a role in regulating vascular tone. We tested the hypothesis that blood pressure (BP) might differ between normal individuals and those with α+thalassemia, in whom the production of α-globin is reduced. METHODS AND RESULTS: The study was conducted in Nairobi, Kenya, among 938 adolescents aged 11 to 17 years. Twenty-four-hour ambulatory BP monitoring and arterial stiffness measurements were performed using an arteriograph device. We genotyped for α+thalassemia by polymerase chain reaction. Complete data for analysis were available for 623 subjects; 223 (36%) were heterozygous (-α/αα) and 47 (8%) were homozygous (-α/-α) for α+thalassemia whereas the remaining 353 (55%) were normal (αα/αα). Mean 24-hour systolic BP ±SD was 118±12 mm Hg in αα/αα, 117±11 mm Hg in -α/αα, and 118±11 mm Hg in -α/-α subjects, respectively. Mean 24-hour diastolic BP ±SD in these groups was 64±8, 63±7, and 65±8 mm Hg, respectively. Mean pulse wave velocity (PWV)±SD was 7±0.8, 7±0.8, and 7±0.7 ms-1, respectively. No differences were observed in PWV and any of the 24-hour ambulatory BP monitoring-derived measures between those with and without α+thalassemia. CONCLUSIONS: These data suggest that the presence of α+thalassemia does not affect BP and/or arterial stiffness in Kenyan adolescents

    Data resource profile: network for analysing longitudinal population-based HIV/AIDS data on Africa (ALPHA Network)

    Get PDF
    The Network for Analysing Longitudinal Population-based HIV/AIDS data on Africa (ALPHA Network, http://alpha.lshtm.ac.uk/) brings together ten population-based HIV surveillance sites in eastern and southern Africa, and is coordinated by the London School of Hygiene and Tropical Medicine (LSHTM). It was established in 2005 and aims to (i) broaden the evidence base on HIV epidemiology for informing policy, (ii) strengthen the analytical capacity for HIV research, and (iii) foster collaboration between network members. All study sites, some starting in the late 1980s and early 1990s, conduct demographic surveillance in populations that range from approximately 20 to 220 thousand individuals. In addition, they conduct population-based surveys with HIV testing, and verbal autopsy interviews with relatives of deceased residents. ALPHA Network datasets have been used for studying HIV incidence, sexual behaviour and the effects of HIV on mortality, fertility, and household composition. One of the network’s substantive focus areas is the monitoring of AIDS mortality and HIV services coverage in the era of antiretroviral therapy. Service use data are retrospectively recorded in interviews and supplemented by information from record linkage with medical facilities in the surveillance areas. Data access is at the discretion of each of the participating sites, but can be coordinated by the network

    HIV/AIDS-related mortality in Africa and Asia: evidence from INDEPTH health and demographic surveillance system sites

    Get PDF
    BACKGROUND: As the HIV/AIDS pandemic has evolved over recent decades, Africa has been the most affected region, even though a large proportion of HIV/AIDS deaths have not been documented at the individual level. Systematic application of verbal autopsy (VA) methods in defined populations provides an opportunity to assess the mortality burden of the pandemic from individual data. OBJECTIVE: To present standardised comparisons of HIV/AIDS-related mortality at sites across Africa and Asia, including closely related causes of death such as pulmonary tuberculosis (PTB) and pneumonia. DESIGN: Deaths related to HIV/AIDS were extracted from individual demographic and VA data from 22 INDEPTH sites across Africa and Asia. VA data were standardised to WHO 2012 standard causes of death assigned using the InterVA-4 model. Between-site comparisons of mortality rates were standardised using the INDEPTH 2013 standard population. RESULTS: The dataset covered a total of 10,773 deaths attributed to HIV/AIDS, observed over 12,204,043 person-years. HIV/AIDS-related mortality fractions and mortality rates varied widely across Africa and Asia, with highest burdens in eastern and southern Africa, and lowest burdens in Asia. There was evidence of rapidly declining rates at the sites with the heaviest burdens. HIV/AIDS mortality was also strongly related to PTB mortality. On a country basis, there were strong similarities between HIV/AIDS mortality rates at INDEPTH sites and those derived from modelled estimates. CONCLUSIONS: Measuring HIV/AIDS-related mortality continues to be a challenging issue, all the more so as anti-retroviral treatment programmes alleviate mortality risks. The congruence between these results and other estimates adds plausibility to both approaches. These data, covering some of the highest mortality observed during the pandemic, will be an important baseline for understanding the future decline of HIV/AIDS

    A comparison of all-cause and cause-specific mortality by household socioeconomic status across seven INDEPTH network health and demographic surveillance systems in sub-Saharan Africa

    Get PDF
    Background: Understanding socioeconomic disparities in all-cause and cause-specific mortality can help inform prevention and treatment strategies. Objectives: To quantify cause-specific mortality rates by socioeconomic status across seven health and demographic surveillance systems (HDSS) in five countries (Ethiopia, Kenya, Malawi, Mozambique, and Nigeria) in the INDEPTH Network in sub-Saharan Africa. Methods: We linked demographic residence data with household survey data containing living standards and education information we used to create a poverty index. Person-years lived and deaths between 2003 and 2016 (periods varied by HDSS) were stratified in each HDSS by age, sex, year, and number of deprivations on the poverty index (0–8). Causes of death were assigned to each death using the InterVA-4 model based on responses to verbal autopsy questionnaires. We estimated rate ratios between socioeconomic groups (2–4 and 5–8 deprivations on our poverty index compared to 0–2 deprivations) for specific causes of death and calculated life expectancy for the deprivation groups. Results: Our pooled data contained almost 3.5 million person-years of observation and 25,038 deaths. All-cause mortality rates were higher among people in households with 5–8 deprivations on our poverty index compared to 0–2 deprivations, controlling for age, sex, and year (rate ratios ranged 1.42 to 2.06 across HDSS sites). The poorest group had consistently higher death rates in communicable, maternal, neonatal, and nutritional conditions (rate ratios ranged 1.34–4.05) and for non-communicable diseases in several sites (1.14–1.93). The disparities in mortality between 5–8 deprivation groups and 0–2 deprivation groups led to lower life expectancy in the higher-deprivation groups by six years in all sites and more than 10 years in five sites. Conclusions: We show large disparities in mortality on the basis of socioeconomic status across seven HDSS in sub-Saharan Africa due to disparities in communicable disease mortality and from non-communicable diseases in some sites. Life expectancy gaps between socioeconomic groups within sites were similar to the gaps between high-income and lower-middle-income countries. Prevention and treatment efforts can benefit from understanding subpopulations facing higher mortality from specific conditions

    Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: a systematic review and modelling study

    Get PDF
    Background: Seasonal influenza virus is a common cause of acute lower respiratory infection (ALRI) in young children. In 2008, we estimated that 20 million influenza-virus-associated ALRI and 1 million influenza-virus-associated severe ALRI occurred in children under 5 years globally. Despite this substantial burden, only a few low-income and middle-income countries have adopted routine influenza vaccination policies for children and, where present, these have achieved only low or unknown levels of vaccine uptake. Moreover, the influenza burden might have changed due to the emergence and circulation of influenza A/H1N1pdm09. We aimed to incorporate new data to update estimates of the global number of cases, hospital admissions, and mortality from influenza-virus-associated respiratory infections in children under 5 years in 2018. Methods: We estimated the regional and global burden of influenza-associated respiratory infections in children under 5 years from a systematic review of 100 studies published between Jan 1, 1995, and Dec 31, 2018, and a further 57 high-quality unpublished studies. We adapted the Newcastle-Ottawa Scale to assess the risk of bias. We estimated incidence and hospitalisation rates of influenza-virus-associated respiratory infections by severity, case ascertainment, region, and age. We estimated in-hospital deaths from influenza virus ALRI by combining hospital admissions and in-hospital case-fatality ratios of influenza virus ALRI. We estimated the upper bound of influenza virus-associated ALRI deaths based on the number of in-hospital deaths, US paediatric influenza-associated death data, and population-based childhood all-cause pneumonia mortality data in six sites in low-income and lower-middle-income countries. Findings: In 2018, among children under 5 years globally, there were an estimated 109·5 million influenza virus episodes (uncertainty range [UR] 63·1–190·6), 10·1 million influenza-virus-associated ALRI cases (6·8–15·1); 870 000 influenza-virus-associated ALRI hospital admissions (543 000–1 415 000), 15 300 in-hospital deaths (5800–43 800), and up to 34 800 (13 200–97 200) overall influenza-virus-associated ALRI deaths. Influenza virus accounted for 7% of ALRI cases, 5% of ALRI hospital admissions, and 4% of ALRI deaths in children under 5 years. About 23% of the hospital admissions and 36% of the in-hospital deaths were in infants under 6 months. About 82% of the in-hospital deaths occurred in low-income and lower-middle-income countries. Interpretation: A large proportion of the influenza-associated burden occurs among young infants and in low-income and lower middle-income countries. Our findings provide new and important evidence for maternal and paediatric influenza immunisation, and should inform future immunisation policy particularly in low-income and middle-income countries. Funding: WHO; Bill & Melinda Gates Foundation.Fil: Wang, Xin. University of Edinburgh; Reino UnidoFil: Li, You. University of Edinburgh; Reino UnidoFil: O'Brien, Katherine L.. University Johns Hopkins; Estados UnidosFil: Madhi, Shabir A.. University of the Witwatersrand; SudáfricaFil: Widdowson, Marc Alain. Centers for Disease Control and Prevention; Estados UnidosFil: Byass, Peter. Umea University; SueciaFil: Omer, Saad B.. Yale School Of Public Health; Estados UnidosFil: Abbas, Qalab. Aga Khan University; PakistánFil: Ali, Asad. Aga Khan University; PakistánFil: Amu, Alberta. Dodowa Health Research Centre; GhanaFil: Azziz-Baumgartner, Eduardo. Centers for Disease Control and Prevention; Estados UnidosFil: Bassat, Quique. University Of Barcelona; EspañaFil: Abdullah Brooks, W.. University Johns Hopkins; Estados UnidosFil: Chaves, Sandra S.. Centers for Disease Control and Prevention; Estados UnidosFil: Chung, Alexandria. University of Edinburgh; Reino UnidoFil: Cohen, Cheryl. National Institute For Communicable Diseases; SudáfricaFil: Echavarría, Marcela Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Fasce, Rodrigo A.. Public Health Institute; ChileFil: Gentile, Angela. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Gordon, Aubree. University of Michigan; Estados UnidosFil: Groome, Michelle. University of the Witwatersrand; SudáfricaFil: Heikkinen, Terho. University Of Turku; FinlandiaFil: Hirve, Siddhivinayak. Kem Hospital Research Centre; IndiaFil: Jara, Jorge H.. Universidad del Valle de Guatemala; GuatemalaFil: Katz, Mark A.. Clalit Research Institute; IsraelFil: Khuri Bulos, Najwa. University Of Jordan School Of Medicine; JordaniaFil: Krishnan, Anand. All India Institute Of Medical Sciences; IndiaFil: de Leon, Oscar. Universidad del Valle de Guatemala; GuatemalaFil: Lucero, Marilla G.. Research Institute For Tropical Medicine; FilipinasFil: McCracken, John P.. Universidad del Valle de Guatemala; GuatemalaFil: Mira-Iglesias, Ainara. Fundación Para El Fomento de la Investigación Sanitaria; EspañaFil: Moïsi, Jennifer C.. Agence de Médecine Préventive; FranciaFil: Munywoki, Patrick K.. No especifíca;Fil: Ourohiré, Millogo. No especifíca;Fil: Polack, Fernando Pedro. Fundación para la Investigación en Infectología Infantil; ArgentinaFil: Rahi, Manveer. University of Edinburgh; Reino UnidoFil: Rasmussen, Zeba A.. National Institutes Of Health; Estados UnidosFil: Rath, Barbara A.. Vienna Vaccine Safety Initiative; AlemaniaFil: Saha, Samir K.. Child Health Research Foundation; BangladeshFil: Simões, Eric A.F.. University of Colorado; Estados UnidosFil: Sotomayor, Viviana. Ministerio de Salud de Santiago de Chile; ChileFil: Thamthitiwat, Somsak. Thailand Ministry Of Public Health; TailandiaFil: Treurnicht, Florette K.. University of the Witwatersrand; SudáfricaFil: Wamukoya, Marylene. African Population & Health Research Center; KeniaFil: Lay-Myint, Yoshida. Nagasaki University; JapónFil: Zar, Heather J.. University of Cape Town; SudáfricaFil: Campbell, Harry. University of Edinburgh; Reino UnidoFil: Nair, Harish. University of Edinburgh; Reino Unid
    corecore