538 research outputs found

    Dobinski-type relations and the Log-normal distribution

    Full text link
    We consider sequences of generalized Bell numbers B(n), n=0,1,... for which there exist Dobinski-type summation formulas; that is, where B(n) is represented as an infinite sum over k of terms P(k)^n/D(k). These include the standard Bell numbers and their generalizations appearing in the normal ordering of powers of boson monomials, as well as variants of the "ordered" Bell numbers. For any such B we demonstrate that every positive integral power of B(m(n)), where m(n) is a quadratic function of n with positive integral coefficients, is the n-th moment of a positive function on the positive real axis, given by a weighted infinite sum of log-normal distributions.Comment: 7 pages, 2 Figure

    Combinatorial approach to generalized Bell and Stirling numbers and boson normal ordering problem

    Full text link
    We consider the numbers arising in the problem of normal ordering of expressions in canonical boson creation and annihilation operators. We treat a general form of a boson string which is shown to be associated with generalizations of Stirling and Bell numbers. The recurrence relations and closed-form expressions (Dobiski-type formulas) are obtained for these quantities by both algebraic and combinatorial methods. By extensive use of methods of combinatorial analysis we prove the equivalence of the aforementioned problem to the enumeration of special families of graphs. This link provides a combinatorial interpretation of the numbers arising in this normal ordering problem.Comment: 10 pages, 5 figure

    Factors that determine the effectiveness of peer interventions in prisons in England and Wales

    Get PDF
    Epidemiological assessment of the prison population globally shows undeniable health need, with research evidence consistently demonstrating that the prevalence of ill health is higher than rates reported in the wider community. Since a meeting convened by the World Health Organisation in the mid-1990s, prisons have been regarded as legitimate settings for health promotion and a myriad of interventions have been adopted to address prisoners’ health and social need. Peer-based approaches have been a common health intervention used within the prison system, but despite their popularity little evidence exists on the approach. This paper presents findings from an expert symposium – part of a wider study which included a systematic review – designed to gather expert opinion on whether and how peer–based approaches work within prisons and if they can contribute to improving the health of prisoners. Experts were selected from various fields including the prison service, academic research and third sector organisations. Expert evidence suggested that the magnitude of success of peer interventions in prison settings is contingent on understanding the contextual environment and a recognition that peer interventions are co-constructed with prison staff at all levels of the organisation. Implications for developing peer-based interventions in prison are given which assist in developing the concept, theory and practice of the health promoting prison

    Hierarchical Dobinski-type relations via substitution and the moment problem

    Full text link
    We consider the transformation properties of integer sequences arising from the normal ordering of exponentiated boson ([a,a*]=1) monomials of the form exp(x (a*)^r a), r=1,2,..., under the composition of their exponential generating functions (egf). They turn out to be of Sheffer-type. We demonstrate that two key properties of these sequences remain preserved under substitutional composition: (a)the property of being the solution of the Stieltjes moment problem; and (b) the representation of these sequences through infinite series (Dobinski-type relations). We present a number of examples of such composition satisfying properties (a) and (b). We obtain new Dobinski-type formulas and solve the associated moment problem for several hierarchically defined combinatorial families of sequences.Comment: 14 pages, 31 reference

    A generic Hopf algebra for quantum statistical mechanics

    Get PDF
    In this paper, we present a Hopf algebra description of a bosonic quantum model, using the elementary combinatorial elements of Bell and Stirling numbers. Our objective in doing this is as follows. Recent studies have revealed that perturbative quantum field theory (pQFT) displays an astonishing interplay between analysis (Riemann zeta functions), topology (Knot theory), combinatorial graph theory (Feynman diagrams) and algebra (Hopf structure). Since pQFT is an inherently complicated study, so far not exactly solvable and replete with divergences, the essential simplicity of the relationships between these areas can be somewhat obscured. The intention here is to display some of the above-mentioned structures in the context of a simple bosonic quantum theory, i.e. a quantum theory of non-commuting operators that do not depend on space-time. The combinatorial properties of these boson creation and annihilation operators, which is our chosen example, may be described by graphs, analogous to the Feynman diagrams of pQFT, which we show possess a Hopf algebra structure. Our approach is based on the quantum canonical partition function for a boson gas.Comment: 8 pages/(4 pages published version), 1 Figure. arXiv admin note: text overlap with arXiv:1011.052

    Some useful combinatorial formulae for bosonic operators

    Get PDF
    We give a general expression for the normally ordered form of a function F(w(a,a*)) where w is a function of boson annihilation and creation operators satisfying [a,a*]=1. The expectation value of this expression in a coherent state becomes an exact generating function of Feynman-type graphs associated with the zero-dimensional Quantum Field Theory defined by F(w). This enables one to enumerate explicitly the graphs of given order in the realm of combinatorially defined sequences. We give several examples of the use of this technique, including the applications to Kerr-type and superfluidity-type hamiltonians.Comment: 8 pages, 3 figures, 17 reference

    Laguerre-type derivatives: Dobinski relations and combinatorial identities

    Get PDF
    We consider properties of the operators D(r,M)=a^r(a^\dag a)^M (which we call generalized Laguerre-type derivatives), with r=1,2,..., M=0,1,..., where a and a^\dag are boson annihilation and creation operators respectively, satisfying [a,a^\dag]=1. We obtain explicit formulas for the normally ordered form of arbitrary Taylor-expandable functions of D(r,M) with the help of an operator relation which generalizes the Dobinski formula. Coherent state expectation values of certain operator functions of D(r,M) turn out to be generating functions of combinatorial numbers. In many cases the corresponding combinatorial structures can be explicitly identified.Comment: 14 pages, 1 figur

    Generating random density matrices

    Full text link
    We study various methods to generate ensembles of random density matrices of a fixed size N, obtained by partial trace of pure states on composite systems. Structured ensembles of random pure states, invariant with respect to local unitary transformations are introduced. To analyze statistical properties of quantum entanglement in bi-partite systems we analyze the distribution of Schmidt coefficients of random pure states. Such a distribution is derived in the case of a superposition of k random maximally entangled states. For another ensemble, obtained by performing selective measurements in a maximally entangled basis on a multi--partite system, we show that this distribution is given by the Fuss-Catalan law and find the average entanglement entropy. A more general class of structured ensembles proposed, containing also the case of Bures, forms an extension of the standard ensemble of structureless random pure states, described asymptotically, as N \to \infty, by the Marchenko-Pastur distribution.Comment: 13 pages in latex with 8 figures include

    Combinatorics and Boson normal ordering: A gentle introduction

    Full text link
    We discuss a general combinatorial framework for operator ordering problems by applying it to the normal ordering of the powers and exponential of the boson number operator. The solution of the problem is given in terms of Bell and Stirling numbers enumerating partitions of a set. This framework reveals several inherent relations between ordering problems and combinatorial objects, and displays the analytical background to Wick's theorem. The methodology can be straightforwardly generalized from the simple example given herein to a wide class of operators.Comment: 8 pages, 1 figur

    Temporally stable coherent states for infinite well and P\"oschl-Teller potentials

    Full text link
    This paper is a direct illustration of a construction of coherent states which has been recently proposed by two of us (JPG and JK). We have chosen the example of a particle trapped in an infinite square-well and also in P\"oschl-Teller potentials of the trigonometric type. In the construction of the corresponding coherent states, we take advantage of the simplicity of the solutions, which ultimately stems from the fact they share a common SU(1,1) symmetry \`a la Barut--Girardello. Many properties of these states are then studied, both from mathematical and from physical points of view.Comment: 48 pages, 21 figure
    • …
    corecore