13,589 research outputs found

    Plant Metabolomics Applications in the Brassicaceae: Added Value for Science and Industry

    Get PDF
    Crops from the family Brassicaceae represent a diverse and very interesting group of plants. In addition, their close relationship with the model plant, Arabidopsis thaliana, makes combined research on these species both scientifically valuable and of considerable commercial importance. In the post-genomics era, much effort is being placed on expanding our capacity to use advanced technologies such as proteomics and metabolomics, to broaden our knowledge of the molecular organization of plants and how genetic differences are translated into phenotypic ones. Metabolomics in particular is gaining much attention mainly due both to the comprehensiveness of the technology and also the potentially close relationship between biochemical composition (including human health-related phytochemicals) and phenotype. In this short review, a brief introduction to the main metabolomics technologies is given taking examples from research on the Brassicaceae for illustratio

    Naturalistic word learning in a second language

    Get PDF

    Intra- and inter-metabolite correlation spectroscopy of tomato metabolomics data obtained by liquid chromatography-mass spectrometry and nuclear magnetic resonance

    Get PDF
    Nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LCMS) are frequently used as technological platforms for metabolomics applications. In this study, the metabolic profiles of ripe fruits from 50 different tomato cultivars, including beef, cherry and round types, were recorded by both 1H NMR and accurate mass LC-quadrupole time-of-flight (QTOF) MS. Different analytical selectivities were found for these both profiling techniques. In fact, NMR and LCMS provided complementary data, as the metabolites detected belong to essentially different metabolic pathways. Yet, upon unsupervised multivariate analysis, both NMR and LCMS datasets revealed a clear segregation of, on the one hand, the cherry tomatoes and, on the other hand, the beef and round tomatoes. Intra-method (NMR¿NMR, LCMS¿LCMS) and inter-method (NMR¿LCMS) correlation analyses were performed enabling the annotation of metabolites from highly correlating metabolite signals. Signals belonging to the same metabolite or to chemically related metabolites are among the highest correlations found. Inter-method correlation analysis produced highly informative and complementary information for the identification of metabolites, even in de case of low abundant NMR signals. The applied approach appears to be a promising strategy in extending the analytical capacities of these metabolomics techniques with regard to the discovery and identification of biomarkers and yet unknown metabolites

    Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity

    Get PDF
    Aim: To screen for novel antagonistic Pseudomonas strains producing both phenazines and biosurfactants that are as effective as Pseudomonas aeruginosa PNA1 in the biocontrol of cocoyam root rot caused by Pythium myriotylum. Material and Results: Forty pseudomonads were isolated from the rhizosphere of healthy white and red cocoyam plants appearing in natural, heavily infested fields in Cameroon. In vitro tests demonstrated that Py. myriotylum antagonists could be retrieved from the red cocoyam rhizosphere. Except for one isolate, all antagonistic isolates produced phenazines. Results from whole-cell protein profiling showed that the antagonistic isolates are different from other isolated pseudomonads, while BOX-PCR revealed high genomic similarity among them. 16S rDNA sequencing of two representative strains within this group of antagonists confirmed their relatively low similarity with validly described Pseudomonas species. These antagonists are thus provisionally labelled as unidentified Pseudomonas strains. Among the antagonists, Pseudomonas CMR5c and CMR12a were selected because of their combined production of phenazines and biosurfactants. For strain CMR5c also, production of pyrrolnitrin and pyoluteorin was demonstrated. Both CMR5c and CMR12a showed excellent in vivo biocontrol activity against Py. myriotylum to a similar level as Ps. aeruginosa PNA1. Conclusion: Pseudomonas CMR5c and CMR12a were identified as novel and promising biocontrol agents of Py. myriotylum on cocoyam, producing an arsenal of antagonistic metabolites. Significance and Impact of the Study: Present study reports the identification of two newly isolated fluorescent Pseudomonas strains that can replace the opportunistic human pathogen Ps. aeruginosa PNA1 in the biocontrol of cocoyam root rot and could be taken into account for the suppression of many plant pathogens

    Divergent roles of CprK paralogues from Desulfitobacterium hafniense in activating gene expression

    Get PDF
    Gene duplication and horizontal gene transfer play an important role in the evolution of prokaryotic genomes. We have investigated the role of three CprK paralogues from the cAMP receptor protein-fumarate and nitrate reduction regulator (CRP-FNR) family of transcriptional regulators that are encoded in the genome of Desulfitobacterium hafniense DCB-2 and possibly regulate expression of genes involved in the energy-conserving terminal reduction of organohalides (halorespiration). The results from in vivo and in vitro promoter probe assays show that two regulators (CprK1 and CprK2) have an at least partially overlapping effector specificity, with preference for ortho-chlorophenols, while meta-chlorophenols proved to be effectors for CprK4. The presence of a potential transposase-encoding gene in the vicinity of the cprK genes indicates that their redundancy is probably caused by mobile genetic elements. The CprK paralogues activated transcription from promoters containing a 14 bp inverted repeat (dehalobox) that closely resembles the FNR-box. We found a strong negative correlation between the rate of transcriptional activation and the number of nuclecitide changes from the optimal dehalobox sequence (TTAAT-N-4-ATTAA). Transcription was initiated by CprK4 from a promoter that is situated upstream of a gene encoding a methyl-accepting chemotaxis protein. This might be the first indication of taxis of an anaerobic bacterium to halogenated aromatic compounds

    A REVISION OF THE AFRICAN GENERA PAROPSIOPSIS AND SMEATHMANNIA (PASSIFLORACEAE - PAROPSIEAE), INCLUDING A NEW SPECIES OF PAROPSIOPSIS FROM CAMEROON

    Get PDF
    The African genera Paropsiopsis Engl. and Smeathmannia R.Br. (Passifloraceae - Paropsieae) are revised. The two genera are well separated based on the presence or absence of a second, annuliform, corona, as well as the number of stamens and curvature of their filaments. An overview of important characters and a key to all genera of Paropsieae is provided. In Paropsiopsis all previously recognised species are united under P. decandra (Baill.) Sleumer. In addition one species, Paropsiopsis atrichogyna J.M.de Vos & Breteler, is newly described and illustrated. In Smeathmannia both previously recognised species are maintained, but infraspecific taxa are rejected. Descriptions of both genera and their species, keys to species, illustrations and distribution maps are provide

    Molecular biological methods for studying the gut microbiota : the EU human gut flora project

    Get PDF
    Seven European laboratories co-operated in a joint project (FAIR CT97-3035) to develop, refine and apply molecular methods towards facilitating elucidation of the complex composition of the human intestinal microflora and to devise robust methodologies for monitoring the gut flora in response to diet. An extensive database of 16S rRNA sequences for tracking intestinal bacteria was generated by sequencing the 16S rRNA genes of new faecal isolates and of clones obtained by amplification with polymerase chain reaction (PCR) on faecal DNA from subjects belonging to different age groups. The analyses indicated that the number of different species (diversity) present in the human gut increased with age. The sequence information generated, provided the basis for design of 16S rRNA-directed oligonucleotide probes to specifically detect bacteria at various levels of phylogenetic hierarchy. The probes were tested for their specificity and used in whole-cell and dot-blot hybridisations. The applicability of the developed methods was demonstrated in several studies and the major outcomes are described

    Neurobiology of axonal transport defects in motor neuron diseases: opportunities for translational research?

    Get PDF
    Intracellular trafficking of cargoes is an essential process to maintain the structure and function of all mammalian cell types, but especially of neurons because of their extreme axon/dendrite polarisation. Axonal transport mediates the movement of cargoes such as proteins, mRNA, lipids, membrane-bound vesicles and organelles that are mostly synthesised in the cell body and in doing so is responsible for their correct spatiotemporal distribution in the axon, for example at specialised sites such as nodes of Ranvier and synaptic terminals. In addition, axonal transport maintains the essential long-distance communication between the cell body and synaptic terminals that allows neurons to react to their surroundings via trafficking of for example signalling endosomes. Axonal transport defects are a common observation in a variety of neurodegenerative diseases, and mutations in components of the axonal transport machinery have unequivocally shown that impaired axonal transport can cause neurodegeneration (Reviewed in El-Kadi et al., 2007, De Vos et al., 2008; Millecamps and Julien, 2013). Here we review our current understanding of axonal transport defects and the role they play in motor neuron diseases (MNDs) with a specific focus on the most common form of MND, amyotrophic lateral sclerosis (ALS)
    • …
    corecore