316 research outputs found
Genome-wide quantitative analysis of DNA methylation from bisulfite sequencing data
Summary: Here we present the open-source R/Bioconductor software package BEAT (BS-Seq Epimutation Analysis Toolkit). It implements all bioinformatics steps required for the quantitative high-resolution analysis of DNA methylation patterns from bisulfite sequencing data, including the detection of regional epimutation events, i.e. loss or gain of DNA methylation at CG positions relative to a reference. Using a binomial mixture model, the BEAT package aggregates methylation counts per genomic position, thereby compensating for low coverage, incomplete conversion and sequencing errors. Availability and implementation: BEAT is freely available as part of Bioconductor at www.bioconductor.org/packages/devel/bioc/html/BEAT.html. The package is distributed under the GNU Lesser General Public License 3.0. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online
Genome scanning of breast cancers by two-dimensional DNA typing.
We have recently used two-dimensional DNA typing to detect genetic alterations in breast tumours. This method, which is based on size separation in neutral gels and sequence separation in denaturing gradient gels followed by hybridisation analysis with mini- and microsatellite core probes, allows the simultaneous analysis of hundreds of allelic fragments in a very short time. Here we demonstrate the potency of this method for total genome scanning of the tumour genome by analysing a small series of breast cancers. Comparison of tumour and normal DNA from ten breast cancer patients, using two-dimensional DNA typing with four core probes, revealed a considerable number of genomic alterations. In contrast, with Southern blot analysis only a few alterations were observed using the same probes. Most of the changes observed (74%) were deletions (absence of spots in the tumour) while 20% corresponded to amplifications (spots of higher intensity in the tumour) and 5% were new spots (gains). About 10% of the genomic changes detected appeared to occur in the tumours of more than one patient
High Preservation of CpG Cytosine Methylation Patterns at Imprinted Gene Loci in Liver and Brain of Aged Mice
A gradual loss of the correct patterning of 5-methyl cytosine marks in gene promoter regions has been implicated in aging and age-related diseases, most notably cancer. While a number of studies have examined DNA methylation in aging, there is no consensus on the magnitude of the effects, particularly at imprinted loci. Imprinted genes are likely candidate to undergo age-related changes because of their demonstrated plasticity in utero, for example, in response to environmental cues. Here we quantitatively analyzed a total of 100 individual CpG sites in promoter regions of 11 imprinted and non-imprinted genes in liver and cerebral cortex of young and old mice using mass spectrometry. The results indicate a remarkably high preservation of methylation marks during the aging process in both organs. To test if increased genotoxic stress associated with premature aging would destabilize DNA methylation we analyzed two DNA repair defective mouse models showing a host of premature aging symptoms in liver and brain. However, also in these animals, at the end of their life span, we found a similarly high preservation of DNA methylation marks. We conclude that patterns of DNA methylation in gene promoters of imprinted genes are surprisingly stable over time in normal, postmitotic tissues and that the
A review on equipment protection and system protection relay in power system
Power system equipment is configured and connected together with multiple voltage levels in existing electrical power system. There are varieties of electrical equipment obtainable in the power system predominantly from generation side up to the distribution side. Consequently, appropriate protections must be apt to prevent inessential disturbances that lead to voltage instability, voltage collapse and sooner a total blackout took place in the power system. The understanding of each component on the system protection is critical. This is due to any abnormal condition and failure can be analyzed and solved effectively due to the rapid changing and development on the power system network. Therefore, the enhancement of power quality can be achieved by sheltering the equipment with protection relay in power system. Moreover, the design of a systematic network is crucial for the system protection itself. Several types of protective equipment and protection techniques are taken into consideration in this paper. Hence, the existing accessible types and methods of system protection in the power system network are reviewed
Change and Aging Senescence as an adaptation
Understanding why we age is a long-lived open problem in evolutionary
biology. Aging is prejudicial to the individual and evolutionary forces should
prevent it, but many species show signs of senescence as individuals age. Here,
I will propose a model for aging based on assumptions that are compatible with
evolutionary theory: i) competition is between individuals; ii) there is some
degree of locality, so quite often competition will between parents and their
progeny; iii) optimal conditions are not stationary, mutation helps each
species to keep competitive. When conditions change, a senescent species can
drive immortal competitors to extinction. This counter-intuitive result arises
from the pruning caused by the death of elder individuals. When there is change
and mutation, each generation is slightly better adapted to the new conditions,
but some older individuals survive by random chance. Senescence can eliminate
those from the genetic pool. Even though individual selection forces always win
over group selection ones, it is not exactly the individual that is selected,
but its lineage. While senescence damages the individuals and has an
evolutionary cost, it has a benefit of its own. It allows each lineage to adapt
faster to changing conditions. We age because the world changes.Comment: 19 pages, 4 figure
Age- and Temperature-Dependent Somatic Mutation Accumulation in Drosophila melanogaster
Using a transgenic mouse model harboring a mutation reporter gene that can be efficiently recovered from genomic DNA, we previously demonstrated that mutations accumulate in aging mice in a tissue-specific manner. Applying a recently developed, similar reporter-based assay in Drosophila melanogaster, we now show that the mutation frequency at the lacZ locus in somatic tissue of flies is about three times as high as in mouse tissues, with a much higher fraction of large genome rearrangements. Similar to mice, somatic mutations in the fly also accumulate as a function of age, but they do so much more quickly at higher temperature, a condition which in invertebrates is associated with decreased life span. Most mutations were found to accumulate in the thorax and less in abdomen, suggesting the highly oxidative flight muscles as a possible source of genotoxic stress. These results show that somatic mutation loads in short-lived flies are much more severe than in the much longer-lived mice, with the mutation rate in flies proportional to biological rather than chronological aging
Effect of Ku80 Deficiency on Mutation Frequencies and Spectra at a LacZ Reporter Locus in Mouse Tissues and Cells
Non-homologous end joining (NHEJ) is thought to be an important mechanism for preventing the adverse effects of DNA double strand breaks (DSBs) and its absence has been associated with premature aging. To investigate the effect of inactivated NHEJ on spontaneous mutation frequencies and spectra in vivo and in cultured cells, we crossed a Ku80-deficient mouse with mice harboring a lacZ-plasmid-based mutation reporter. We analyzed various organs and tissues, as well as cultured embryonic fibroblasts, for mutations at the lacZ locus. When comparing mutant with wild-type mice, we observed a significantly higher number of genome rearrangements in liver and spleen and a significantly lower number of point mutations in liver and brain. The reduced point mutation frequency was not due to a decrease in small deletion mutations thought to be a hallmark of NHEJ, but could be a consequence of increased cellular responses to unrepaired DSBs. Indeed, we found a substantial increase in persistent 53BP1 and γH2AX DNA damage foci in Ku80−/− as compared to wild-type liver. Treatment of cultured Ku80-deficient or wild-type embryonic fibroblasts, either proliferating or quiescent, with hydrogen peroxide or bleomycin showed no differences in the number or type of induced genome rearrangements. However, after such treatment, Ku80-deficient cells did show an increased number of persistent DNA damage foci. These results indicate that Ku80-dependent repair of DNA damage is predominantly error-free with the effect of alternative more error-prone pathways creating genome rearrangements only detectable after extended periods of time, i.e., in young adult animals. The observed premature aging likely results from a combination of increased cellular senescence and an increased load of stable, genome rearrangements
Comprehensive microRNA profiling in B-cells of human centenarians by massively parallel sequencing
Background: MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and play a critical role in development, homeostasis, and disease. Despite their demonstrated roles in age-associated pathologies, little is known about the role of miRNAs in human aging and longevity.Results: We employed massively parallel sequencing technology to identify miRNAs expressed in B-cells from Ashkenazi Jewish centenarians, i.e., those living to a hundred and a human model of exceptional longevity, and younger controls without a family history of longevity. With data from 26.7 million read
Intra-Organ Variation in Age-Related Mutation Accumulation in the Mouse
Using a transgenic mouse model harboring chromosomally integrated lacZ mutational target genes, we previously demonstrated that mutations accumulate with age much more rapidly in the small intestine than in the brain. Here it is shown that in the small intestine point mutations preferentially accumulate in epithelial cells of the mucosa scraped off the underlying serosa. The mucosal cells are the differentiated villus cells that have undergone multiple cell divisions. A smaller age-related increase, also involving genome rearrangements, was observed in the serosa, which consists mainly of the remaining crypts and non-dividing smooth muscle cells. In the brain we observed an accumulation of only point mutations in no other areas than hypothalamus and hippocampus. To directly test for cell division as the determining factor in the generation of point mutations we compared mutation induction between mitotically active and quiescent embryonic fibroblasts from the same lacZ mice, treated with either UV (a point mutagen) or hydrogen peroxide (a clastogen). The results indicate that while point mutations are highly replication-dependent, genome rearrangements are as easily induced in non-dividing cells as in mitotically active ones. This strongly suggests that the point mutations found to have accumulated in the mucosal part of the small intestine are the consequence of replication errors. The same is likely true for point mutations accumulating in hippocampus and hypothalamus of the brain since neurogenesis in these two areas continues throughout life. The observed intra-organ variation in mutation susceptibility as well as the variation in replication dependency of different types of mutations indicates the need to not only extend observations made on whole organs to their sub-structures but also take the type of mutations and mitotic activity of the cells into consideration. This should help elucidating the impact of genome instability and its consequences on aging and disease
- …