1,461 research outputs found
Hysteretic clustering in granular gas
Granular material is vibro-fluidized in N=2 and N=3 connected compartments,
respectively. For sufficiently strong shaking the granular gas is
equi-partitioned, but if the shaking intensity is lowered, the gas clusters in
one compartment. The phase transition towards the clustered state is of 2nd
order for N=2 and of 1st order for N=3. In particular, the latter is
hysteretic. The experimental findings are accounted for within a dynamical
model that exactly has the above properties
Cyclic fatigue resistance tests of Nickel-Titanium rotary files using simulated canal and weight loading conditions
published_or_final_versio
Bubble size prediction in co-flowing streams
In this paper, the size of bubbles formed through the breakup of a gaseous
jet in a co-axial microfluidic device is derived. The gaseous jet surrounded by
a co-flowing liquid stream breaks up into monodisperse microbubbles and the
size of the bubbles is determined by the radius of the inner gas jet and the
bubble formation frequency. We obtain the radius of the gas jet by solving the
Navier-Stokes equations for low Reynolds number flows and by minimization of
the dissipation energy. The prediction of the bubble size is based on the
system's control parameters only, i.e. the inner gas flow rate , the outer
liquid flow rate , and the tube radius . For a very low gas-to-liquid
flow rate ratio () the bubble radius scales as , independently of the inner to outer viscosity
ratio and of the type of the velocity profile in the gas, which
can be either flat or parabolic, depending on whether high-molecular-weight
surfactants cover the gas-liquid interface or not. However, in the case in
which the gas velocity profiles are parabolic and the viscosity ratio is
sufficiently low, i.e. , the bubble diameter scales as
, with smaller than 1/2
Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking
The Greek aperitif Ouzo is not only famous for its specific anise-flavored
taste, but also for its ability to turn from a transparent miscible liquid to a
milky-white colored emulsion when water is added. Recently, it has been shown
that this so-called Ouzo effect, i.e. the spontaneous emulsification of oil
microdroplets, can also be triggered by the preferential evaporation of ethanol
in an evaporating sessile Ouzo drop, leading to an amazingly rich drying
process with multiple phase transitions [H. Tan et al., Proc. Natl. Acad. Sci.
USA 113(31) (2016) 8642]. Due to the enhanced evaporation near the contact
line, the nucleation of oil droplets starts at the rim which results in an oil
ring encircling the drop. Furthermore, the oil droplets are advected through
the Ouzo drop by a fast solutal Marangoni flow. In this article, we investigate
the evaporation of mixture droplets in more detail, by successively increasing
the mixture complexity from pure water over a binary water-ethanol mixture to
the ternary Ouzo mixture (water, ethanol and anise oil). In particular,
axisymmetric and full three-dimensional finite element method simulations have
been performed on these droplets to discuss thermal effects and the complicated
flow in the droplet driven by an interplay of preferential evaporation,
evaporative cooling and solutal and thermal Marangoni flow. By using image
analysis techniques and micro-PIV measurements, we are able to compare the
numerically predicted volume evolutions and velocity fields with experimental
data. The Ouzo droplet is furthermore investigated by confocal microscopy. It
is shown that the oil ring predominantly emerges due to coalescence
Ion distribution and ablation depth measurements of a fs-ps laser-irradiated solid tin target
The ablation of solid tin surfaces by an 800-nanometer-wavelength laser is
studied for a pulse length range from 500 fs to 4.5 ps and a fluence range
spanning 0.9 to 22 J/cm^2. The ablation depth and volume are obtained employing
a high-numerical-aperture optical microscope, while the ion yield and energy
distributions are obtained from a set of Faraday cups set up under various
angles. We found a slight increase of the ion yield for an increasing pulse
length, while the ablation depth is slightly decreasing. The ablation volume
remained constant as a function of pulse length. The ablation depth follows a
two-region logarithmic dependence on the fluence, in agreement with the
available literature and theory. In the examined fluence range, the ion yield
angular distribution is sharply peaked along the target normal at low fluences
but rapidly broadens with increasing fluence. The total ionization fraction
increases monotonically with fluence to a 5-6% maximum, which is substantially
lower than the typical ionization fractions obtained with nanosecond-pulse
ablation. The angular distribution of the ions does not depend on the laser
pulse length within the measurement uncertainty. These results are of
particular interest for the possible utilization of fs-ps laser systems in
plasma sources of extreme ultraviolet light for nanolithography.Comment: 8 pages, 7 figure
The Bouncing Jet: A Newtonian Liquid Rebounding off a Free Surface
We find that a liquid jet can bounce off a bath of the same liquid if the
bath is moving horizontally with respect to the jet. Previous observations of
jets rebounding off a bath (e.g. Kaye effect) have been reported only for
non-Newtonian fluids, while we observe bouncing jets in a variety of Newtonian
fluids, including mineral oil poured by hand. A thin layer of air separates the
bouncing jet from the bath, and the relative motion replenishes the film of
air. Jets with one or two bounces are stable for a range of viscosity, jet flow
rate and velocity, and bath velocity. The bouncing phenomenon exhibits
hysteresis and multiple steady states.Comment: 9 pages, 7 figures. submitted to Physical Review
Anisotropic valence-->core x-ray fluorescence from a [Rh(en)3][Mn(N)(CN)5]·H2O single crystal: Experimental results and density functional calculations
High resolution x-ray fluorescence spectra have been recorded for emission in different directions from a single crystal of the compound [Rh(en)3][Mn(N)(CN)5]·H2O. The spectra are interpreted by comparison with density functional theory (DFT) electronic structure calculations. The Kbeta[double-prime] line, which is strongly polarized along the Mn–N axis, can be viewed as an N(2s)-->Mn(1s) transition, and the angular dependence is understood within the dipole approximation. The so-called Kbeta2,5 region has numerous contributions but is dominated by Mn(4p) and C(2s)-->Mn(1s) transitions. Transition energy splittings are found in agreement with those of calculated occupied molecular orbitals to within 1 eV. Computed relative transition probabilities reproduce experimentally observed trends
Road centre line simplification principles for angular segment analysis
Angular segment analysis is one of the most fundamental analyses in space syntax practice that helps understand movement, land-use and other socio-economic patterns. It was initially applied in axial segment maps and later was used in road centre line maps as an attempt to overcome the 'segment problem' (Turner, 2005). Furthermore, the growing need to examine large urban systems has led to the wide use of road centre line maps instead of the previously hand-drawn axial maps. However, this transition to such datasets has lacked systematic studies on what is required to convert a road centre line map into a segment map, in order to produce reliable results of the angular segment analysis. To date, no consensual methodology has been developed within the space syntax community. This paper attempts to clarify what a road centre line segment represents spatially and suggests principles and rules to simplify a road centre line map to a segment map. Based on previous experience, the simplification mostly relies on the following two principles: reducing the number of nodes in the dual graph representation of a street network; optimising the angular change between adjacent nodes of the dual graph when space allows it. In addition to the above general principles, we discuss rules for special and complex cases, e.g. roundabouts, underpasses, bridges etc. To evaluate these rules and principles comparisons are carried out between traditional axial and RCL unsimplified and simplified segment maps, to develop a good understanding of how changes in dual graph representation of a street network can affect space syntax measure of 'choice'. Correlations of angular segment choice values are performed in order to evaluate which simplification technique can approximate better the axial representation of actual human activity. The results show that using a raw road centre line data set raises several inconsistencies in the analysis results, and the progressive application of the different simplification techniques brings these results closer to those of a traditional axial segment map, and thus to a better representation of socio-economic activity. The purpose of simplification is to minimise inconsistencies to ensure maximum accuracy in the results of angular segment analysis
High resolution coronary MR angiography at 7 Tesla: comparison with standard bright blood and black blood imaging
- …
