69 research outputs found
Relationships among intramammary health, udder and teat characteristics, and productivity of extensively managed ewes
Mastitis is an economically important disease and its subclinical state is difficult to diagnose, which makes mitigation more challenging. The objectives of this study were to screen clinically healthy ewes in order to 1) identify cultivable microbial species in milk, 2) evaluate somatic cell count (SCC) thresholds associated with intramammary infection, and 3) estimate relationships between udder and teat morphometric traits, SCC, and ewe productivity. Milk was collected from two flocks in early (\u3c5 \u3ed) and peak (30 to 45 d) lactation to quantify SCC (n = 530) and numerate cultivable microbial species by culture-based isolation followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS; n = 243) identification. Within flock and lactation stage, 11% to 74% (mean = 36%) of samples were culture positive. More than 50 unique identifications were classified by MALDI-TOF MS analysis, and Bacillus licheniformis (18% to 27%), Micrococcus flavus (25%), Bacillus amyloliquefaciens (7% to 18%), and Staphylococcus epidermidis (26%) were among the most common within flock and across lactation stage. Optimum SCC thresholds to identify culture-positive samples ranged from 175 × 103 to 1,675 × 103 cells/mL. Ewe productivity was assessed as total 120-d adjusted litter weight (LW120) and analyzed within flock with breed, parity, year, and the linear covariate of log10 SCC (LSCC) at early or peak lactation. Although dependent on lactation stage and year, each 1-unit increase in LSCC (e.g., an increase in SCC from 100 × 103 to 1,000 × 103 cells/mL) was predicted to decrease LW120 between 9.5 and 16.1 kg when significant. Udder and teat traits included udder circumference, teat length, teat placement, and degree of separation of the udder halves. Correlations between traits were generally low to moderate within and across lactation stage and most were not consistently predictive of ewe LSCC. Overall, the frequencies of bacteria-positive milk samples indicated that subclinical mastitis (SCM) is common in these flocks and can impact ewe productivity. Therefore, future research is warranted to investigate pathways and timing of microbial invasion, genomic regions associated with susceptibility, and husbandry to mitigate the impact of SCM in extensively managed ewes
Subunit-selective proteasome activity profiling uncovers uncoupled proteasome subunit activities during bacterial infections
The proteasome is a nuclear‐cytoplasmic proteolytic complex involved in nearly all regulatory pathways in plant cells. The three different catalytic activities of the proteasome can have different functions, but tools to monitor and control these subunits selectively are not yet available in plant science. Here, we introduce subunit‐selective inhibitors and dual‐color fluorescent activity‐based probes for studying two of the three active catalytic subunits of the plant proteasome. We validate these tools in two model plants and use this to study the proteasome during plant–microbe interactions. Our data reveal that Nicotiana benthamiana incorporates two different paralogs of each catalytic subunit into active proteasomes. Interestingly, both β1 and β5 activities are significantly increased upon infection with pathogenic Pseudomonas syringae pv. tomato DC3000 lacking hopQ1‐1 [PtoDC3000(ΔhQ)] whilst the activity profile of the β1 subunit changes. Infection with wild‐type PtoDC3000 causes proteasome activities that range from strongly induced β1 and β5 activities to strongly suppressed β5 activities, revealing that β1 and β5 activities can be uncoupled during bacterial infection. These selective probes and inhibitors are now available to the plant science community, and can be widely and easily applied to study the activity and role of the different catalytic subunits of the proteasome in different plant species.Bio-organic Synthesi
Recommended from our members
Developing Global Leaders for Research, Regulation, and Stewardship of Crop Protection Chemistry in the 21st Century
To provide sufficient food and fiber to the increasing global population, the technologies associated with crop protection are growing ever more sophisticated but, at the same time, societal expectations for the safe use of crop protection chemistry tools are also increasing. The goal of this perspective is to highlight the key issues that face future leaders in crop protection, based on presentations made during a symposium titled “Developing Global Leaders for Research, Regulation and Stewardship of Crop Protection Chemistry in the 21st Century”, held in conjunction with the IUPAC 13th International Congress of Pesticide Chemistry in San Francisco, CA, USA, during August 2014. The presentations highlighted the fact that leaders in crop protection must have a good basic scientific training and understand new and evolving technologies, are aware of the needs of both developed and developing countries, and have good communication skills. Concern is expressed over the apparent lack of resources to meet these needs, and ideas are put forward to remedy these deficiencies.Keywords: sustainable agriculture, developing regions, training leaders, smart systems, stewardship, women in agriculture, crop protection, universities, nanopesticides, communications, GM crop
COVID-19-associated hyperinflammation and escalation of patient care: a retrospective longitudinal cohort study.
BACKGROUND: A subset of patients with severe COVID-19 develop a hyperinflammatory syndrome, which might contribute to morbidity and mortality. This study explores a specific phenotype of COVID-19-associated hyperinflammation (COV-HI), and its associations with escalation of respiratory support and survival. METHODS: In this retrospective cohort study, we enrolled consecutive inpatients (aged ≥18 years) admitted to University College London Hospitals and Newcastle upon Tyne Hospitals in the UK with PCR-confirmed COVID-19 during the first wave of community-acquired infection. Demographic data, laboratory tests, and clinical status were recorded from the day of admission until death or discharge, with a minimum follow-up time of 28 days. We defined COV-HI as a C-reactive protein concentration greater than 150 mg/L or doubling within 24 h from greater than 50 mg/L, or a ferritin concentration greater than 1500 μg/L. Respiratory support was categorised as oxygen only, non-invasive ventilation, and intubation. Initial and repeated measures of hyperinflammation were evaluated in relation to the next-day risk of death or need for escalation of respiratory support (as a combined endpoint), using a multi-level logistic regression model. FINDINGS: We included 269 patients admitted to one of the study hospitals between March 1 and March 31, 2020, among whom 178 (66%) were eligible for escalation of respiratory support and 91 (34%) patients were not eligible. Of the whole cohort, 90 (33%) patients met the COV-HI criteria at admission. Despite having a younger median age and lower median Charlson Comorbidity Index scores, a higher proportion of patients with COV-HI on admission died during follow-up (36 [40%] of 90 patients) compared with the patients without COV-HI on admission (46 [26%] of 179). Among the 178 patients who were eligible for full respiratory support, 65 (37%) met the definition for COV-HI at admission, and 67 (74%) of the 90 patients whose respiratory care was escalated met the criteria by the day of escalation. Meeting the COV-HI criteria was significantly associated with the risk of next-day escalation of respiratory support or death (hazard ratio 2·24 [95% CI 1·62-2·87]) after adjustment for age, sex, and comorbidity. INTERPRETATION: Associations between elevated inflammatory markers, escalation of respiratory support, and survival in people with COVID-19 indicate the existence of a high-risk inflammatory phenotype. COV-HI might be useful to stratify patient groups in trial design. FUNDING: None
- …