57 research outputs found

    Insights into the role of polymer-surfactant complexes in drug solubilisation/stabilisation during drug release from solid dispersions

    Get PDF
    To evaluate the role of polymer-surfactant interactions in drug solubilisation/stabilisation during the dissolution of spray-dried solid dispersions and their potential impact on in vivo drug solubilisation and absorption. Dissolution/precipitation tests were performed on spray-dried HPMC-Etravirine solid dispersions to demonstrate the impact of different surfactants on the in vitro performance of the solid dispersions. Interactions between HPMC and bio-relevant and model anionic surfactants (bile salts and SDS respectively) were further characterised using surface tension measurements, fluorescence spectroscopy, DLS and SANS. Fast and complete dissolution was observed in media containing anionic surfactants with no drug recrystallisation within 4 h. The CMCs of bile salts and SDS were dramatically reduced to lower CACs in the presence of HPMC and Etravirine. The maximum increases of the apparent solubility of Etravirine were with the presence of HPMC and SDS/bile salts. The SANS and DLS results indicated the formation of HPMC-SDS/bile salts complexes which encapsulated/solubilised the drug. This study has demonstrated the impact HPMC-anionic surfactant interactions have during the dissolution of non-ionic hydrophilic polymer based solid dispersions and has highlighted the potential relevance of this to a fuller understanding of drug solubilisation/stabilisation in vivo

    MCNP modelling of vaginal and uterine applicators used in intracavitary brachytherapy and comparison with radiochromic film measurements

    No full text
    Brachytherapy is an advanced cancer treatment that is minimally invasive, minimising radiation exposure to the surrounding healthy tissues. Microselectron\ua9 Nucletron devices with 192Ir source can be used for gynaecological brachytherapy, in patients with vaginal or uterine cancer. Measurements of isodose curves have been performed in a PMMA phantom and compared with Monte Carlo calculation and TPS (Plato software of Nucletron BPS 14.2) evaluation. The isodose measurements have been performed with radiochromic films (Gafchromic EBT \ua9). The dose matrix has been obtained after digitalisation and use of a dose calibration curve obtained with a 6MV photon beam provided by a medical linear accelerator. A comparison between the calculated and the measured matrix has been performed. The calculated dose matrix is obtained with a simulation using the MCNP5 Monte Carlo code (F4MESH tally)

    A phase 3, long-term, open-label safety study of Galcanezumab in patients with migraine

    No full text
    Abstract Background Galcanezumab, a humanized monoclonal antibody that selectively binds to the calcitonin gene-related peptide, has demonstrated in previous Phase 2 and Phase 3 clinical studies (≤6-month of treatment) a reduction in the number of migraine headache days and improved patients’ functioning. This study evaluated the safety and tolerability, as well as the effectiveness of galcanezumab for up to 12 months of treatment in patients with migraine. Methods Patients diagnosed with episodic or chronic migraine, 18 to 65 years old, that were not exposed previously to galcanezumab, were randomized to receive galcanezumab 120 mg or 240 mg, administered subcutaneously once monthly for a year. Safety and tolerability were evaluated by frequency of treatment-emergent adverse events (TEAEs), serious adverse events (SAEs), and adverse events (AEs) leading to study discontinuation. Laboratory values, vital signs, electrocardiograms, and suicidality were also analyzed. Additionally, overall change from baseline in the number of monthly migraine headache days, functioning, and disability were assessed. Results One hundred thirty five patients were randomized to each galcanezumab dose group. The majority of patients were female (> 80%) and on average were 42 years old with 10.6 migraine headache days per month at baseline. 77.8% of the patients completed the open-label treatment phase, 3.7% of patients experienced an SAE, and 4.8% discontinued due to AEs. TEAEs with a frequency ≥ 10% of patients in either dose group were injection site pain, nasopharyngitis, upper respiratory tract infection, injection site reaction, back pain, and sinusitis. Laboratory values, vital signs, or electrocardiograms did not show anyclinically meaningful differences between galcanezumab dosesOverall mean reduction in monthly migraine headache days over 12 months for the galcanezumab dose groups were 5.6 (120 mg) and 6.5 (240 mg). Level of functioning was improved and headache-related disability was reduced in both dose groups. Conclusion Twelve months of treatment with self-administered injections of galcanezumab was safe and associated with a reduction in the number of monthly migraine headache days. Safety and tolerability of the 2 galcanezumab dosing regimens were comparable. Trial registration ClinicalTrials.gov as NCT02614287, posted November 15, 2015. These data were previously presented as a poster at the International Headache Congress 2017: PO-01-184, Late-Breaking Abstracts of the 2017 International Headache Congress. (2017). Cephalalgia, 37(1_suppl), 319–374

    A single nucleoside viral polymerase inhibitor against norovirus, rotavirus, and sapovirus-induced diarrhea

    No full text
    A safe and highly efficient antiviral is needed for the prophylaxis and/or treatment of viral diarrhea. We here demonstrate the in vitro antiviral activity of four 2'-C-methyl nucleoside analogues against noro-, rota-, and sapoviruses. The most potent nucleoside analogue, 7-deaza-2'-C-methyladenosine, inhibits replication of these viruses with a 50% effective concentration < 5 \ub5M. Mechanistically, we demonstrate that the 2'-C-methyl nucleoside analogues act by inhibiting transcription of the rotavirus genome. This provides the first evidence that a single viral-diarrhea-targeted treatment can be developed through a viral-polymerase-targeting small molecule

    Discovery of a novel class of norovirus inhibitors with high barrier of resistance

    No full text
    Human noroviruses (HuNoVs) are the most common cause of viral gastroenteritis resulting in ~219,000 deaths annually and a societal cost of ~USD60 billion. There are no antivirals or vaccines available to treat and/or prevent HuNoV. In this study, we performed a large-scale phe-notypical antiviral screening using the mouse norovirus (MNV), which included ~1000 drug-like small molecules from the Drug Design and Synthesis Centre (Sapienza University, Rome). Compound 3-((3,5-dimethylphenyl)sulfonyl)-5-chloroindole-N-(phenylmethanol-4-yl)-2.carboxamide (compound 1) was identified as an inhibitor of MNV replication with an EC50 of 0.5 ± 0.1 µM. A series of 10 analogs were synthesized of which compound 6 showed an improved potency/selectiv-ity (EC50 0.2 ± 0.1 µM) against MNV; good activity was also observed against the HuNoV GI replicon (EC50 1.2 ± 0.6 µM). Time-of-drug-addition studies revealed that analog 6 acts at a time point that coincides with the onset of viral RNA replication. After six months of selective pressure, two compound 6res variants were independently selected, both harboring one mutation in VPg and three mutations in the RdRp. After reverse engineering S131T and Y154F as single mutations into the MNV backbone, we did not find a markedly compound 6res phenotype. In this study, we present a class of novel norovirus inhibitors with a high barrier to resistance and in vitro antiviral activity
    • …
    corecore