689 research outputs found
Non-Gaussianity of the primordial perturbation in the curvaton model
We use the delta N -formalism to investigate the non-Gaussianity of the
primordial curvature perturbation in the curvaton scenario for the origin of
structure. We numerically calculate the full probability distribution function
allowing for the non-instantaneous decay of the curvaton and compare this with
analytic results derived in the sudden-decay approximation. We also present
results for the leading-order contribution to the primordial bispectrum and
trispectrum. In the sudden-decay approximation we derive a fully non-linear
expression relating the primordial perturbation to the initial curvaton
perturbation. As an example of how non-Gaussianity provides additional
constraints on model parameters, we show how the primordial bispectrum on CMB
scales can be used to constrain variance on much smaller scales in the curvaton
field. Our analytical and numerical results allow for multiple tests of
primordial non-Gaussianity, and thus they can offer consistency tests of the
curvaton scenario.Comment: 16 pages, 6 figures. V2: minor typos corrected, references added. V3:
minor changes to match better with the PRD versio
Constraints on primordial isocurvature perturbations and spatial curvature by Bayesian model selection
We present posterior likelihoods and Bayesian model selection analysis for
generalized cosmological models where the primordial perturbations include
correlated adiabatic and cold dark matter isocurvature components. We perform
nested sampling with flat and, for the first time, curved spatial geometries of
the Universe, using data from the cosmic microwave background (CMB)
anisotropies, the Union supernovae (SN) sample and a combined measurement of
the integrated Sachs-Wolfe (ISW) effect. The CMB alone favors a 3% (positively
correlated) isocurvature contribution in both the flat and curved cases. The
non-adiabatic contribution to the observed CMB temperature variance is 0 <
alpha_T < 7% at 98% CL in the curved case. In the flat case, combining the CMB
with SN data artificially biases the result towards the pure adiabatic LCDM
concordance model, whereas in the curved case the favored level of
non-adiabaticity stays at 3% level with all combinations of data. However, the
ratio of Bayes factors, or Delta ln(evidence), is more than 5 points in favor
of the flat adiabatic LCDM model, which suggests that the inclusion of the 5
extra parameters of the curved isocurvature model is not supported by the
current data. The results are very sensitive to the second and third acoustic
peak regions in the CMB temperature angular power: therefore a careful
calibration of these data will be required before drawing decisive conclusions
on the nature of primordial perturbations. Finally, we point out that the odds
for the flat non-adiabatic model are 1:3 compared to the curved adiabatic
model. This may suggest that it is not much less motivated to extend the
concordance model with 4 isocurvature degrees of freedom than it is to study
the spatially curved adiabatic model.Comment: 15 pages, 5 figures. V2: References and future predictions added;
accepted by PR
Dark energy with non-adiabatic sound speed: initial conditions and detectability
Assuming that the universe contains a dark energy fluid with a constant
linear equation of state and a constant sound speed, we study the prospects of
detecting dark energy perturbations using CMB data from Planck,
cross-correlated with galaxy distribution maps from a survey like LSST. We
update previous estimates by carrying a full exploration of the mock data
likelihood for key fiducial models. We find that it will only be possible to
exclude values of the sound speed very close to zero, while Planck data alone
is not powerful enough for achieving any detection, even with lensing
extraction. We also discuss the issue of initial conditions for dark energy
perturbations in the radiation and matter epochs, generalizing the usual
adiabatic conditions to include the sound speed effect. However, for most
purposes, the existence of attractor solutions renders the perturbation
evolution nearly independent of these initial conditions.Comment: 16 pages, 2 figures, version accepted in JCA
The Subdominant Curvaton
We present a systematic study of the amplitude of the primordial perturbation
in curvaton models with self-interactions, treating both renormalizable and
non-renormalizable interactions. In particular, we consider the possibility
that the curvaton energy density is subdominant at the time of the curvaton
decay. We find that large regions in the parameter space give rise to the
observed amplitude of primordial perturbation even for non-renormalizable
curvaton potentials, for which the curvaton energy density dilutes fast. At the
time of its decay, the curvaton energy density may typically be subdominant by
a relative factor of 10^-3 and still produce the observed perturbation. Field
dynamics turns out to be highly non-trivial, and for non-renormalizable
potentials and certain regions of the parameter space we observe a
non-monotonous relation between the final curvature perturbation and the
initial curvaton value. In those cases, the time evolution of the primordial
perturbation also displays an oscillatory behaviour before the curvaton decay.Comment: Acknowledgments of financial support added, no further change
On the growth of perturbations in interacting dark energy and dark matter fluids
The covariant generalizations of the background dark sector coupling
suggested in G. Mangano, G. Miele and V. Pettorino, Mod. Phys. Lett. A 18, 831
(2003) are considered. The evolution of perturbations is studied with detailed
attention to interaction rate that is proportional to the product of dark
matter and dark energy densities. It is shown that some classes of models with
coupling of this type do not suffer from early time instabilities in strong
coupling regime.Comment: 11 pages, 2 figures. v3: minor changes, typos fixe
Nonlinear curvature perturbations in an exactly soluble model of multi-component slow-roll inflation
Using the nonlinear formalism, we consider a simple exactly
soluble model of multi-component slow-roll inflation in which the nonlinear
curvature perturbation can be evaluated analytically.Comment: 4 pages, no figure, typos corrected, references added, final version
to be published in CQ
The magnitude of the non-adiabatic pressure in the cosmic fluid
Understanding the non-adiabatic pressure, or relative entropy, perturbation
is crucial for studies of early-universe vorticity and Cosmic Microwave
Background observations. We calculate the evolution of the linear non-adiabatic
pressure perturbation from radiation domination to late times, numerically
solving the linear governing equations for a wide range of wavenumbers. Using
adiabatic initial conditions consistent with WMAP seven year data, we find
nevertheless that the non-adiabatic pressure perturbation is non-zero and grows
at early times, peaking around the epoch of matter/radiation equality and
decaying in matter domination. At early times or large redshifts (z=10,000) its
power spectrum peaks at a comoving wavenumber k~0.2h/Mpc, while at late times
(z=500) it peaks at k~0.02 h/Mpc.Comment: 5 pages, 4 figures. Replaced with version accepted by MNRAS. One
figure removed, added some discussio
Multiple scalar particle decay and perturbation generation
We study the evolution of the universe which contains a multiple number of
non-relativistic scalar fields decaying into both radiation and pressureless
matter. We present a powerful analytic formalism to calculate the matter and
radiation curvature perturbations, and find that our analytic estimates agree
with full numerical results within an error of less than one percent. Also we
discuss the isocurvature perturbation between matter and radiation components,
which may be detected by near future cosmological observations, and point out
that it crucially depends on the branching ratio of the decay rate of the
scalar fields and that it is hard to make any model independent predictions.Comment: (v1) 22 pages, 4 figures, 2 tables; (v2) JHEP3 style, 24 pages,
references added and typos corrected, to appear in JCA
Unified Dark Matter models with fast transition
We investigate the general properties of Unified Dark Matter (UDM) fluid
models where the pressure and the energy density are linked by a barotropic
equation of state (EoS) and the perturbations are adiabatic. The
EoS is assumed to admit a future attractor that acts as an effective
cosmological constant, while asymptotically in the past the pressure is
negligible. UDM models of the dark sector are appealing because they evade the
so-called "coincidence problem" and "predict" what can be interpreted as
, but in general suffer the effects of a non-negligible
Jeans scale that wreak havoc in the evolution of perturbations, causing a large
Integrated Sachs-Wolfe effect and/or changing structure formation at small
scales. Typically, observational constraints are violated, unless the
parameters of the UDM model are tuned to make it indistinguishable from
CDM. Here we show how this problem can be avoided, studying in detail
the functional form of the Jeans scale in adiabatic UDM perturbations and
introducing a class of models with a fast transition between an early
Einstein-de Sitter CDM-like era and a later CDM-like phase. If the
transition is fast enough, these models may exhibit satisfactory structure
formation and CMB fluctuations. To consider a concrete case, we introduce a toy
UDM model and show that it can predict CMB and matter power spectra that are in
agreement with observations for a wide range of parameter values.Comment: 30 pages, 15 figures, JHEP3 style, typos corrected; it matches the
published versio
- …