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We present posterior likelihoods and Bayesian model selection analysis for generalized cosmological
models where the primordial perturbations include correlated adiabatic and cold dark matter isocur-
vature components. We perform nested sampling with flat and, for the first time, curved spatial
geometries of the Universe, using data from the cosmic microwave background (CMB) anisotropies,
the Union supernovae (SN) sample and a combined measurement of the integrated Sachs–Wolfe
(ISW) effect. The CMB alone favors a 3% (positively correlated) isocurvature contribution in both
the flat and curved cases. The non-adiabatic contribution to the observed CMB temperature vari-
ance is 0 < αT < 7% at 98% CL in the curved case. In the flat case, combining the CMB with SN
data artificially biases the result towards the pure adiabatic ΛCDM concordance model, whereas
in the curved case the favored level of non-adiabaticity stays at 3% level with all combinations of
data. However, the ratio of Bayes factors, or ∆ ln(evidence), is more than 5 points in favor of the
flat adiabatic ΛCDM model, which suggests that the inclusion of the 5 extra parameters of the
curved isocurvature model is not supported by the current data. The results are very sensitive to
the second and third acoustic peak regions in the CMB temperature angular power: therefore a
careful calibration of these data will be required before drawing decisive conclusions on the nature
of primordial perturbations. Finally, we point out that the odds for the flat non-adiabatic model are
1:3 compared to the curved adiabatic model. This may suggest that it is not much less motivated
to extend the concordance model with 4 isocurvature degrees of freedom than it is to study the
spatially curved adiabatic model, though at the moment the model selection disfavors both of these
models.

PACS numbers: 98.80.Es, 98.80.Cq

I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) [1] and distant supernovae (SN) [2] have shaped
the Lambda cold dark matter (ΛCDM) standard model
of Cosmology. However, being based on phenomenology,
this model still needs better understanding of some of its
phases, in particular the origin of the perturbations and
the recent-time accelerated expansion of the Universe.

The paradigm of cosmic inflation is often assumed to
describe the early history of the Universe; however, many
different inflationary theories exist [3] that are still com-
patible with current data from the CMB and the large
scale structure (LSS) of the Universe, and it is therefore
interesting to look for ways to distinguish between them.

The primordial perturbations are usually believed to
have formed from quantum fluctuations in the early Uni-
verse, stretched by inflation. There are two possible types
of perturbations that can be thus generated: single-field
inflation can only produce adiabatic (isentropic) modes of
curvature perturbation R, while multi–field models can
also generate isocurvature (entropy) perturbations S [4].
In Ref. [5] four classes of isocurvature perturbations were
identified: the cold dark matter (CDM), baryon, neu-
trino density, and neutrino velocity isocurvature modes.
A generic perturbation can be composed as a linear com-
bination of these ones and an adiabatic mode. However,
it has turned out difficult to find physical mechanisms

to stimulate for example the neutrino velocity isocurva-
ture mode. In this paper we study a correlated mixture
of adiabatic and CDM isocurvature modes (later called
the mixed model), that is naturally generated in multi–
field inflationary models and in curvaton(-like) models
[6, 7, 8, 9, 10]. Other scenarios that may generate
observationally compatible isocurvature include axions
[11, 12], dilaton [13] and ekpyrotic [14, 15] models, brane
inflation [16, 17], large scale magnetic fields [18, 19], cos-
mic strings and other topological defects [20, 21], whereas
an isocurvature mode in interacting dark energy models
may grow catastrophically [22, 23, 24].

Physically the inclusion of a CDM isocurvature mode
is well motivated. It simply means that initially, at a
time trad, deep in the radiation dominated era on super-
Hubble scales, the relative number densities of CDM and
photons are not spatially constant, and therefore the to-
tal entropy perturbation S(trad,x) does not vanish ev-
erywhere. In addition to the amplitude (or indeed the
variance) of R and S at trad, other important observ-
ables of the primordial perturbations are the tilt of their
power spectrum, parameterized by the spectral index n,
and their (non-)Gaussianity.

At later times and lower energies, the CMB is an al-
most perfectly isotropic radiation that has been gener-
ated at the epoch of hydrogen recombination. At even
more recent times, some additional effects can alter the
CMB, such as the integrated Sachs-Wolfe (ISW) effect
[25], which is originated by the decay of the gravitational
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potentials. The most recent and complete ISW data have
been obtained by [26] combining data from the CMB and
six galaxy catalogs.

It is remarkable that the initial conditions of the CMB
are set by the final conditions of inflation. For this reason,
we can distinguish between different models of the early
universe if we can show which initial conditions agree best
with the CMB (and ISW) observations. In principle, the
latter should be particularly useful in constraining the
mixed models, and in breaking parameter degeneracies
that remain after using the CMB and SN data. This
is mainly because the SN consist of purely background
data, and hence the SN data can constrain the isocurva-
ture contribution only indirectly by constraining certain
background parameters (such as ΩΛ) which are degener-
ate with isocurvature [27]. In addition to constraining
the background, the ISW data probe directly the per-
turbation power spectrum. This is affected by the CDM
isocurvature mode, in particular if its spectral index niso

is relatively large as found for example in [28]. Unfor-
tunately, after employing in this paper for the first time
the ISW data for constraining the mixed model, we will
find that the current ISW data are not accurate enough
for this purpose, but still improve the constraints on the
spatial curvature.

Observations from the CMB and LSS indicate that
the primordial perturbations were inflationary-like, al-
most Gaussian, and mainly adiabatic with an almost
scale-invariant power spectrum. After the first serious
constraints on an uncorrelated mixed model [29], and af-
ter ruling out pure CDM isocurvature [30], various mix-
tures of the adiabatic and isocurvature modes have been
tested. In particular, since the release of the Wilkin-
son Microwave Anisotropy Probe (WMAP) data, obser-
vational constraints have been obtained, e.g., by [10, 27,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45] for
WMAP1 [46], by [47, 48, 49, 50, 51, 52] for WMAP3 [53]
and most recently for WMAP5 [54] by [28], and by [55]
in the particular case of axion (uncorrelated, niso = 1).
In [28] it is shown that the CDM isocurvature mode is
not required by a combination of current data if flatness

is assumed. Nevertheless, there were hints of a positively
correlated 4% contribution from the CDM isocurvature
mode [48] in WMAP3 at the 3σ level. The “isocurvature
feature” in the 3-year data was identified to lie around
the second and third acoustic peaks of the CMB power
spectrum, which changed significantly in the 5-year data
due to new beam calibrations.

The only existing work where a mixture of primordial
adiabatic and isocurvature perturbations has been stud-
ied in non-flat case is [56]. The focus there was in testing
how much the (possible) presence of isocurvature modes
affects the determination of the geometry (spatial curva-
ture) of the Universe, based on WMAP1 data.

So our first task is to assess what the current CMB data

alone tell about the nature of primordial perturbations.
Then we add other complementary data, either SN or
ISW or both of them, to see whether they tighten the

constraints. Our approach differs from [28], where all
data were directly combined, the ISW was not used, and
flatness was imposed.

In order to quantify the preference of one model
over another we perform several computationally costly
Bayesian evidence comparisons [57], taking as a refer-
ence model the spatially flat adiabatic ΛCDM model. In
line with [28], we employ the recently developed Multi-
Nest package [58]. In addition to several advantages, de-
scribed in Appendix A, compared to the conventional
Monte Carlo Markov Chain (MCMC) method, MultiNest
allows us, for the first time, to constrain correlated adia-

batic and CDM isocurvature initial perturbations also in

spatially curved universes, and in particular to calculate
Bayesian evidences for these models.

We will test how much spatial curvature is allowed,
and on the other hand, how much allowing for the non-
flat case changes the posterior likelihoods of other pa-
rameters, for both the adiabatic and mixed models. In-
deed we will show that assuming spatial flatness of the
Universe in isocurvature studies would strongly bias the
results toward pure adiabaticity.

We perform the full evidence calculation for each com-
bination of data sets. Although this is computationally
demanding, it is an imperative not to blindly combine all

different types of data sets into one big chunk (in our
case CMB&SN&ISW) without testing what is the indi-
vidual information gained from each of the data sets and
whether the data are consistent with each other. In par-
ticular, the black-box method of rushing to combine all
available data would be dangerous, if there happened to
be ’tension’ between the data sets. Then artificially tight
constraints would follow, without a real physical mean-
ing. Therefore we strongly advocate the approach where
we add the data sets to the analysis one by one.

As a side product of our analysis, we obtain a compre-
hensive comparison of flat and curved adiabatic ΛCDM
models too — in the light of any combination of the CMB
and SN or ISW data. These results are complementary
to a recent work [59] where baryon acoustic oscillation
data were employed along with the CMB shift parame-
ter and SN data, but the ISW data or the full CMB data
were not used.

The plan of this paper is the following. After describing
our chosen parametrization for the initial conditions of
perturbations in Sec. II, we summarize the method of
our analysis in Sec. III. Then we expose and comment
on the results of the likelihood analysis in Sec. IV, report
the Bayesian evidences in Sec. V, and conclude in Sec. VI.

II. PRIMORDIAL PERTURBATIONS & CMB

We parametrize the primordial perturbations the same
way as in [27, 48].

The evolution of (scalar) fields during (multiple-field)
inflation generates a trajectory in field space. Pertur-
bations can be decomposed in modes which are along
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the trajectory (curvature perturbations) and normal to
it (entropy perturbations) [60, 61]. The history of these
perturbations at any scale λ ∼ k−1, where k is the wave
number (later referred to simply as “scale”), goes as fol-
lows: perturbations were generated during inflation (or
by an alternative theory) at a time t⋆(k), when they were
“promoted” from the quantum vacuum level to the clas-
sical level by horizon crossing. Then, they were super-
horizon (i.e., super-Hubble) and at some point in the ra-
diation era trad they acted as seeds of the matter power
spectrum P (k) and CMB perturbations.

During the super-horizon evolution, the perturbations
(R,S) are not frozen, but evolve from their original val-
ues (R⋆,S⋆) according to

(

R
S

)

=

(

1 TRS

0 TSS

)(

R⋆

S⋆

)

. (1)

The transfer functions TXY (t, k) describe the evolution
of the perturbations, and are generally model dependent.
In this paper we approximate them by power laws. It is
important to highlight that the form of Eq. (1) means
that in the absence of primordial isocurvature perturba-
tions, S⋆ = 0 implies that no isocurvature modes will
be created, and the adiabatic perturbations remain con-
stant.

By introducing explicit power laws for the transfer
functions, and defining a pivot scale k0 and a relative
scale k̄ ≡ k/k0, we can write the auto-correlation and
cross-correlation power spectra for the perturbations at
trad

PR(k) = Pad1 + Pad2

= A2
r k̄

nad1−1 + A2
s k̄

nad2−1

PS(k) = Piso = B2k̄niso−1 (2)

CRS(k) = AsBk̄ncor−1.

The usual adiabatic case is recovered by setting As =
B = 0. Also note that here the correlated spectral index
can be written in terms of the others: ncor = (niso +
nad2)/2.

The angular power spectra of the CMB temper-
ature (TT ) and polarization (EE) auto-correlation,
the temperature-polarization (TE) cross-correlation,
the matter-matter (mm) auto-correlation, and the
temperature-matter (Tm) cross-correlation (the ISW-
LSS cross-correlation) which would follow with Ar =
As = B = 1, are convolutions of the adiabatic and isocur-

vature transfer functions Θ
(X)
l,R (k), Θ

(X)
l,S (k) as follows

ĈXY ad1
l = 4π

∫

dk

k

[

Θ
(X)
l,R (k)Θ

(Y )
l,R (k)

]

k̄nad1−1 (3)

ĈXY ad2
l = 4π

∫

dk

k

[

Θ
(X)
l,R (k)Θ

(Y )
l,R (k)

]

k̄nad2−1 (4)

ĈXY iso
l = 4π

∫

dk

k

[

Θ
(X)
l,S (k)Θ

(Y )
l,S (k)

]

k̄niso−1 (5)

ĈXY cor
l = 4π

∫

dk

k

[

Θ
(X)
l,R (k)Θ

(Y )
l,S (k)

+Θ
(Y )
l,R (k)Θ

(X)
l,S (k)

]

k̄ncor−1, (6)

where X and Y stand for either T , E, or m. Via the

above integrals, the transfer functions Θ
(X)
l,R (k), Θ

(X)
l,S (k)

relate the primordial perturbations at wave number
k to the anisotropy at multipole l today. These
functions depend on all the history of the Universe
from the primordial time trad up to today, and they
can be calculated by a Boltzmann integrator, such
as CAMB/Cosmomc [62, 63], publicly available at
http://www.cosmologist.info/cosmomc.

The total angular power spectrum is a sum of the above
contributions weighted with the primordial amplitudes
Ar, As, and B at the pivot scale

CXY
l = A2

rĈ
XY ad1
l + A2

sĈ
XY ad2
l

+B2ĈXY iso
l + AsBĈXY cor

l . (7)

In order to have a parametrization more suitable to data
analysis, we redefine the amplitude parameters as

A2 ≡ A2
r + A2

s + B2

α ≡
B2

A2
∈ [0, 1]

γ ≡ sign(AsB)
A2

s

A2
r + A2

s

∈ [−1, 1],

so that the total angular power spectra are composed by
adiabatic, isocurvature and correlated components as

CXY
l = A2

[

(1−α)(1−|γ|)ĈXY ad1
l + (1−α)|γ|ĈXY ad2

l

+αĈXY iso
l + sign(γ)

√

α(1 − α)|γ|ĈXY cor
l

]

≡ CXY ad1
l + CXY ad2

l + CXY iso
l + CXY cor

l . (8)

We can now constrain the amount of isocurvature modes
for the primordial perturbations by measuring the like-
lihood distributions of the parameters α and γ. We
call the above parametrization of primordial perturbation
spectra “spectral index parametrization” or as a short-
hand notation “n-parametrization”. It has six parame-
ters which describe the primordial perturbations: nad1,
nad2, niso, A, γ, and α.

Additional derived parameters can be defined. For ex-
ample, a parameter neff

ad represents the spectral index for

http://www.cosmologist.info/cosmomc
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adiabatic modes obtained expressing the adiabatic con-
tribution as a single power law:

neff
ad(k̄) − 1 =

d lnPR(k̄)

d ln k̄

=
(nad1−1)(1−|γ|)k̄nad1−1 + (nad2−1)|γ|k̄nad2−1

(1−|γ|)k̄nad1−1 + |γ|k̄nad2−1
. (9)

Our pivot-scale free measure of the non-adiabaticity will
be the total non-adiabatic contribution to the CMB tem-
perature variance

αT ≡
〈(δT non−ad)2〉

〈(δT total)2〉

=

∑

l(2l + 1)(CTT iso
l + CTTcor

l )
∑

l(2l + 1)CTT
l

. (10)

When some parameters of a model are not sufficiently
tightly constrained by the data, the posterior likelihood
functions become sensitive to the assumed prior probabil-
ity densities for the parameters. Even when one assumes
flat, i.e., uniform, priors for the primary parameters of
the model, the question remains, which parameters are
taken to be the primary parameters, since the priors for
the quantities derived from the primary parameters (de-
rived parameters) will not be flat. To avoid problems
related to spectral indices becoming unconstrained when
the corresponding amplitude parameters have small val-
ues, a parametrization in terms of amplitudes at two dif-
ferent scales, k1 and k2, was proposed in [27], and em-
ployed in [48] and [64]. In this paper we use this “ampli-
tude parametrization” as the basis of our analysis, but
we show the final results in the n-parametrization.

The mapping from the amplitude parametrization to
the spectral index parametrization is easy to find from
the definitions (2) and (8). The spectral indices can
be written in terms of the parameters of amplitude
parametrization as

nad1 − 1 =
ln [Pad1(k2)/Pad1(k1)]

ln(k2/k1)
(11)

nad2 − 1 =
ln [Pad2(k2)/Pad2(k1)]

ln(k2/k1)
(12)

niso − 1 =
ln [Piso(k2)/Piso(k1)]

ln(k2/k1)
, (13)

where the first (uncorrelated) adiabatic, the second (cor-
related) adiabatic and the isocurvature power at scales
ki (i = 1, 2) are given by

Pad1(ki) = A2
i (1 − αi)(1 − |γi|) (14)

Pad2(ki) = A2
i (1 − αi)|γi| (15)

Piso(ki) = A2
i αi , (16)

respectively. Then the amplitudes A, α, and γ at
the pivot scale k0 are obtained from the amplitude-
parametrization amplitudes A1, α1, and γ1 defined at

k1 by [27]

A2 = A2
1

[

(1 − α1)(1 − |γ1|)k̃
nad1−1

+(1 − α1)|γ1|k̃
nad2−1 + α1k̃

niso−1
]

(17)

α = α1k̃
niso−1 ×

[

(1 − α1)(1 − |γ1|)k̃
nad1−1

+(1 − α1)|γ1|k̃
nad2−1 + α1k̃

niso−1
]−1

(18)

γ =
γ1k̃

nad2−1

(1 − |γ1|)k̃nad1−1 + |γ1|k̃nad2−1
, (19)

where k̃ = k0/k1, and the spectral indices are obtained
from Eqs. (11–13). Since we assume that all the com-
ponent spectra can be described by power laws, γ1 and
γ2 must have the same sign. Hence, they are not com-
pletely independent. To obtain independent primary pa-
rameters, we draw γ1 from the range [−1, 1], but γ2 only
from the range [0, 1], and let γ1 determine the sign of the
correlation.

Employing the mappings (11–13) and (17–19) we ob-
tain the posterior likelihoods of nad1, nad2, niso, A, α,
γ for a MultiNest run in the amplitude parametrization
(corresponding to flat priors for A1, α1, γ1, A2, α2, and
γ2). However, if we want to convert the results obtained
in the amplitude parametrization to flat priors for the
spectral indices, then the mappings (11–13) and (17–19)
are not enough: we have to correct for the prior too.
This can be done by weighting the multiplicities in the
MCMC chains (i.e. weighting the posterior likelihood) by
the Jacobian of the transformation (11–13) and (17–19).
If the original run was made using primary parameters
{Θi} (and flat priors for them), but we want to show the

results with flat priors for {Θ̃i}, the multiplicities must
be multiplied by

J =

∣

∣

∣

∣

∣

det

(

∂Θi

∂Θ̃j

)∣

∣

∣

∣

∣

. (20)

From a purely theoretical point of view one would
naively think that the choice of pivot scales k1 and k2

(or in the n-parametrization k0) is only a matter of taste.
However, when performing the likelihood analysis and
producing 1d or 2d marginalized posterior likelihoods
(or global Bayesian evidences), the integration weight
changes dramatically if we change the pivot scale. This
is evident from Eq. (20) above and in figure 21 in Ref.
[27], see niso in particular. Indeed, the posterior con-
straints on all the parameters depend somewhat on the
choice of pivot scales, but the effect is strongest on poorly
constrained parameters.

One should try to optimize the constraining power
of the data, and in [48] it was shown that in n-
parametrization the optimal choice for k0 is in the mid-
dle (in logarithmic sense) of the available data. Hence
one should avoid choosing k0 too close to the edges of
the data. For example, a common but unsuitable choice,
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Parameter Explanation range (min, max)
Primary parameters

ωb physical baryon density; ωb = h2Ωb (0.005, 0.100)
ωc physical cold dark matter density; ωc = h2Ωc (0.01, 0.99)
θ sound horizon angle; θ = rs(z∗)/DA(z∗) (0.5, 5.0)
τ optical depth to reionization (0.01, 0.30)
ΩK curvature density; ΩK = 1 − Ωtot (-0.20, 0.10)
ln(1010A2

1) A2
1 is the overall primordial perturbation power at k = k1 = 0.002 Mpc−1 (1.0, 7.0)

γ1 correlation amplitude at k = k1 = 0.002 Mpc−1 (-1.0, 1.0)
α1 primordial isocurvature fraction at k = k1 = 0.002 Mpc−1 (0, 1.0)
ln(1010A2

2) A2
2 is the overall primordial perturbation power at k = k2 = 0.05 Mpc−1 (1.0, 7.0)

γ2 correlation amplitude at k = k2 = 0.05 Mpc−1 (0, 1.0)
α2 primordial isocurvature fraction at k = k2 = 0.05 Mpc−1 (0, 1.0)
ASZ amplitude of the SZ template for WMAP and ACBAR (0, 2)

Derived parameters
H0 Hubble parameter [km/s/Mpc]; calculated from ωb, ωc, θ, and ΩK tophat (40, 100)
h h = H0/(100 km/s/Mpc) (0.40, 1.00)
Ωm matter density parameter; Ωm = (ωb + ωc)/h2

ΩΛ vacuum energy density parameter; ΩΛ = 1 − ΩK − Ωm

nad1 spectral index of primordial uncorrelated adiabatic part; nad1 − 1 = d ln(Pad1)/d ln k
nad2 spectral index of primordial correlated adiabatic part; nad2 − 1 = d ln(Pad2)/d ln k
niso spectral index of primordial isocurvature part; niso − 1 = d ln(Piso)/d ln k
neff

ad effective single adiabatic spectral index, Eq. (9)
γ correlation amplitude at k = k0 = 0.01 Mpc−1 (-1.0, 1.0)
α primordial isocurvature fraction at k = k0 = 0.01 Mpc−1 (0, 1.0)
αT total non-adiabatic contribution to the CMB temperature variance, Eq. (10)

TABLE I: Our primary nested sampling parameters and a selection of derived parameters.

k0 = 0.05 Mpc−1 (most recently employed in [28]), leads
to very loose constraints on niso (and hence on the other
parameters), since at these scales the isocurvature has
hardly any effect on the CMB angular power. On the
other hand, another common choice, k0 = 0.002 Mpc−1

is too close to the large scale end of the data. Our choice,
k0 = 0.01 Mpc−1, matches with Refs. [27] and [48],
and is also supported by [65], where k0 = 0.017 Mpc−1

was found to lead to the most stringent constraints.
Ref. [65] formulated the issue by quantifying the center
of the data to be the statistical center. For the ampli-
tude parametrization we choose k1 = 0.002 Mpc−1 and
k2 = 0.05 Mpc−1 which allows an easy comparison to the
other works.

In addition to avoiding problems with the poorly con-
strained spectral index niso, the amplitude parametriza-
tion has a great advantage when performing Bayesian
evidence calculations. The Bayesian evidence is sensitive
to the chosen prior (ranges) of the parameters; see e.g.
[49]. In the case of n-parametrization it is completely
unclear what the ranges for spectral indices should be.
If one chose very small ranges for nad2 and niso, then
a larger evidence would follow than when allowing for
wide ranges. This ambiguity and arbitrariness was re-
cently faced in [28]. In the amplitude parametrization
we avoid this problem, since the amplitudes have ranges
from −1 or 0 to +1 by definition.

III. DETAILS OF THE ANALYSIS

We perform nested sampling likelihood anal-
yses using a modified version of the Multi-
Nest package [58], which is publicly available at
http://www.mrao.cam.ac.uk/software/multinest, and
which is a significantly more efficient alternative to the
standard Monte Carlo Markov chain (MCMC) method.
Since this method is fairly new, we will describe its
principles in Appendix A.

A. Parameters

In Sec. II we discussed in detail how we parametrize
the primordial perturbations. In the conventional purely
adiabatic case one needs an amplitude and a spectral
index, or amplitudes at two different scales, i.e. two pa-
rameters. In our correlated adiabatic and isocurvature
model we need these for the uncorrelated adiabatic, for
the correlated adiabatic, and for the isocurvature spec-
trum. This makes up six perturbation parameters. In
addition to these we have the conventional background
parameters which exist in both models. Their number is
four in the case of a flat Universe and five in the case of
non-flat Universe. Finally, when comparing the models
to the CMB data we need the amplitude of the Sunyaev-
Zel’dovich template ASZ .

Therefore the adiabatic ΛCDM reference model has 7
(8) independent primary parameters while our extended

http://www.mrao.cam.ac.uk/software/multinest
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correlated isocurvature model has 11 (12) parameters in
the case of flat (non-flat) Universe. We summarize the
parametrization and give the prior ranges, as well as list
useful derived parameters in Table I.

We assume a flat (uniform) prior over the given ranges
for the primary parameters. The derived parameters will
have non-flat priors unless otherwise stated. Indeed, the
top-hat prior on the Hubble parameter H0 introduces
somewhat non-flat priors for ωb, ωc, θ, and ΩK , but this
is irrelevant since over the peak of the posterior likeli-
hood their prior is sufficiently flat. Importantly, also the
resulting prior on αT is rather flat as shown in [48].

B. Data

The data we use are: the publicly available WMAP 5
years temperature and polarisation data (TT, EE, TE)
[54] plus the smaller scale ACBAR data [66] for the CMB
anisotropies, the supernovae from the Union compilation
[2] with systematic uncertainties flag turned on, and the
ISW data of the cross–correlations between the CMB and
six galaxy catalogs by [26].

The ISW effect is a small secondary anisotropy which
is added at late times onto the primary CMB anisotropies
in case the Universe is undergoing a transition to a cur-
vature or dark energy phase. It is due to the decay of the
gravitational potentials while CMB photons are travel-
ling through potential wells and, as such, is correlated
with the large scale structure (LSS) of the Universe. Its
small magnitude, about 10% of the primary CMB, hin-
ders a direct detection of its temperature power spec-
trum, but the effect can be detected by cross–correlating
the CMB with some tracer of the LSS [67]. This signal
has been detected by many authors by cross-correlating
the WMAP CMB map with various galaxy catalogs (see
references in [26]) out to a median redshift of z = 1.5.
Most recently, this limit was extended by [68] using the
latest quasars from the SDSS, improving the previous re-
sult of [69]. Detections of this effect have been used to
constrain various aspects of cosmology [70, 71, 72, 73, 74].

The data set we use for the ISW was obtained by [26]
by cross–correlating the WMAP maps of the CMB with
six galaxy catalogs (2MASS, SDSS main galaxies, LRGs
and QSOs, NVSS, HEAO) in several bands of the elec-
tromagnetic spectrum at median redshifts 0 < z̄ < 1.5.
The data consist of 13 angular bins of the real space
cross–correlation functions (CCFs) between each catalog
and the CMB, at angles 0 deg ≤ ϑ ≤ 12 deg, thus having
78 data points, whose off-diagonal covariance matrix is
important.

For each sampled model, we calculate the theoreti-
cal cross power spectra between temperature and matter
perturbations, CTm

l , from a full Boltzmann integration
within CAMB, adding the relevant smoothing beams,
and then perform a Legendre transformation to obtain
the CCF at the same angles as the measurements. Fi-
nally we ensure that the theoretical models are compat-

ible with the observed auto–correlation functions of the
catalogs by allowing the galactic bias parameter (the ra-
tio between matter power and observed galaxy power,
which is assumed constant for each catalog), to vary for
each model. We can then calculate the likelihood of each
model given the ISW data, assuming that the errors are
Gaussian.

We chose not to use the measurements of the matter
power spectrum because the current data and theories
do not describe accurately the mapping from the redshift
space luminous galaxy observations to the Fourier space
(k-space) galaxy power spectrum, and further to the un-
derlying k-space matter power spectrum. Therefore the
shape of the matter power spectrum is still under inves-
tigation [75]. As the isocurvature contribution modifies
the shape and tilt of the matter power spectrum, once
the shape of the observational matter power spectrum
becomes well understood it will improve constraints on
niso, in particular. It should be noted that our model
with a free niso differs from Ref. [76] where the adiabatic
and isocurvature compnents share the same spectral in-
dex. As the CMB data prefers predominantly adiabatic
nearly scale invariant perturbations, the common spec-
tral index is forced near to 1, which in [76] leads to a con-
clusion that the isocurvature would not affect the matter
power spectrum.

IV. POSTERIOR LIKELIHOODS

We study the likelihoods with various combinations
of data, comparing the results to the adiabatic ΛCDM
model. First we use the CMB data alone, then we add
either SN or ISW, and finally both of them into the anal-
ysis. We present 1d marginalised posterior likelihoods
in the mixed model for the selected primary and derived
parameters in Fig. 1 for the flat (left panel) and curved
(right panel) cases.

A. The CMB data alone

The CMB alone does favor a small amount of posi-
tively correlated isocurvature mode. This is consistent
with what was previously reported in [48], although the
few percent isocurvature contribution is now slightly less
favored (over pure adiabatic model, αT = 0) due to the
modified shape of the 2nd and 3rd acoustic peaks in the
WMAP5 data.

The key points in Fig. 1 for the CMB data alone (blue
dashed curves) are: mixed models with a small contribu-
tion from a CDM isocurvature mode, a small Ωm, a large
ΩΛ, a large Hubble parameter H0, and a large sound hori-
zon angle are marginally favored over the concordance
adiabatic ΛCDM model. The CMB favors a positive cor-
relation, γ, between the primordial adiabatic and isocur-
vature perturbations (with the sign convention where a
positive primordial correlation leads to a positive CTTcor

l
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FIG. 1: Left: Posterior likelihood distributions for the model parameters assuming mixed initial conditions and flat spatial
geometry of the Universe. Right: The same for curved spatial geometry. ’ALL’ refers to the CMB&SN&ISW data.

in the Sachs-Wolfe region, see e.g. [27, 48]). In the curved
case a positive non-adiabatic contribution to the observed
CMB temperature variance is more clearly favored than
in the flat case. We find that αT > 0 at 98.9% (84.4%)
CL in the curved (flat) case, or 0.8% < αT < 6.5%
(−3.1% < αT < 6.7% ) at 95% CL; see the bottom right
plots in Fig. 1.

However, it is clear that due to the poorly constrained
Hubble parameter, matter density, and curvature, we
cannot use the current CMB data alone for studying the
mixed model. Nevertheless, as we will discover in the
next subsections, for a robust analysis it is crucial to
know what are the favored regions in parameter space
with the CMB data alone.

B. Adding the SN and ISW data

Now we repeat the likelihood analysis with the CMB
and SN data. In the flat case the data now prefer a purely
adiabatic model: the likelihood of αT has a peak close to
zero at slightly negative value. However, in the curved
case adding the SN data hardly changes any of the likeli-
hood distributions of isocurvature parameters (compare
blue dashed and black solid curves in Fig. 1). Impor-
tantly the constraints of αT remain almost the same as
with the CMB data alone: now 0 < αT < 7.0% at 95%
CL.

The SN data do improve the constraints on some back-
ground parameters (ωc, ΩK , ΩΛ, Ωm), but do not signif-
icantly move the peaks of their likelihoods, in the curved
case. As noticed above, the non-adiabatic contribution,
αT , which is to some extent degenerate with ΩK and
ΩΛ, stays untouched. We can understand this by look-
ing at Fig. 2. The CMB tightly constrains the acoustic
peak positions, and consequently the sound horizon an-
gle θ = rs/DA, where rs is the sound horizon at last
scattering and DA is the angular diameter distance to
last scattering. As rs depends only on ωb and ωc, and
even this dependence is very mild [77], the CMB con-
straint on θ is directly reflected by the favored DA, which
depends on Ωm, ΩΛ (or ΩK), and H0. The adiabatic
model fits the acoustic peak positions perfectly whenever
DA ≃ 14 000 Mpc (indicated by the highlighted cyan DA

curve in Fig. 2). However, in the mixed model there is an
additional freedom caused by the ability of the correlated
contribution to the angular power spectrum, CTTcor

l , to
move slightly the acoustic peak positions of the total CTT

l

toward right, as shown in figure 2 in Ref. [48]. Therefore
a slightly larger θ, i.e. a smaller DA, is favored whenever
there is a small positively correlated isocurvature contri-
bution to the CMB. A DA ≃ 13 000 Mpc (indicated by
the highlighted magenta DA curve in Fig. 2) leads now
to the best fits to the CMB. If we restrict the analysis to
flat models (indicated by the thin black dashed line), the
CMB picks the models (on the flat line, Ωm + ΩΛ = 1)
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FIG. 2: Illustrative 95% CL regions when using the SN or
ISW data alone. The dotted black curves indicate the angular
diameter distance DA to last scattering in units of Mpc. Two
of them are highlighted — in the mixed models the CMB
data favor DA ≃ 13 000 Mpc, whereas in the pure adiabatic
models DA ≃ 14 000 Mpc is favored. The thin black dashed
line indicates flat models. The thin red line indicates in which
part of the parameter space the expansion of the Universe is
accelerating or decelerating today.

which are near the intersection point of the mentioned
DA curve. In the adiabatic case this means Ωm ≈ 0.26
(ΩΛ ≈ 0.74, H0 ≈ 72), whereas in the mixed case the
intersection of DA ≃ 13 000 Mpc and the flat line is at
Ωm ≈ 0.19 (ΩΛ ≈ 0.81, H0 ≈ 87). This explains why,
in light of the CMB alone, the flatness assumption forces
Ωm, (ΩΛ), and H0 to quite unusual values, when allowing
for the mixed initial conditions of perturbations.

If we now combine the CMB with SN (indicated by
red dashed 95% CL curve in Fig. 2), it is clear that the
well-fitting flat mixed models (the blue circle) will be
excluded. However, in the curved case the SN data do
not affect at all the well-fitting mixed models, and the
best-fit region stays unaffected (the red diamond sym-
bol). Finally, adding the ISW data (indicated by the blue
dot-dashed 95% CL curve in Fig. 2) does not affect at all
the well-fitting adiabatic or mixed models. Therefore the
results for the isocurvature parameters with CMB&ISW
are very close to the CMB alone case. The ISW data
favor a slightly smaller matter density and slightly less
closed Universe than the SN data, thus affecting these
background parameters when compared to the CMB&SN
analysis.

All the above remarks are confirmed by the 2d pos-
terior likelihood contours shown in the upper panel of
Fig. 3. The CMB alone leaves a long degeneracy line
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FIG. 3: Selected 2d posterior likelihoods for the mixed model
when allowing for a spatially curved geometry of the Universe.
The inner contours indicate 68% CL, and the outer ones 95%
CL regions.

in the (Ωm, ΩΛ) plane for mixed models with DA ≃
13 000 Mpc. The SN or ISW data break this degeneracy,
the ISW data favoring slightly lower Ωm than the SN
data. Importantly, in the curved case, the well-fitting
models to the CMB sit in the middle of the best-fit re-
gion of SN or ISW. Combining all the data (the ma-
genta 68% and 95% CL curves) leads to the tightest con-
straints on Ωm and ΩK , being fully consistent with what
we would expect from Fig. 2 and from the CMB&SN and
CMB&ISW cases in Fig. 3.

The lower panel of Fig. 3 shows a tiny offset in the
favored curvature between the SN and ISW data, and in-
dicates why using all the data leads to looser constraints
on αT , as seen in the bottom right plot in the right panel
of Fig. 1.

The main conclusion after including the SN data is
that, in the flat case, this brings the result in line with
the concordance adiabatic model, as also reported in [28].
Here we must put once more emphasis on the fact that
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FIG. 4: Posterior likelihoods with the CMB&SN data for se-
lected model parameters in the flat and curved case assuming
either pure adiabatic or mixed initial conditions.

this happens only when restricting the analysis to flat
models (thin black dashed lines in Figs. 2 and 3), whereas
when allowing for spatial curvature of the Universe, a
significant non-adiabatic contribution remains allowed.
Most importantly, the well-fitting mixed models lie at
the intersection of all the data (CMB, SN and ISW)
at slightly closed Ωtot ≈ 1.03 geometry, though there
is a slight competition (which exists also in the adiabatic
case) between the higher value of Ωm preferred by the
SN data, and the lower value preferred by the ISW data.

C. Robustness of the main cosmological
parameters against the assumed initial conditions

An important question in constraining cosmologies is
how much the assumptions made in the analysis affect
the interpreted values of cosmological parameters from
the given data [78]. Often pure adiabatic initial condi-
tions are assumed when constraining the parameters of
the ΛCDM model. In this subsection we show how the
favored values (or regions) of the main cosmological pa-
rameters change if one assumes mixed initial conditions.
In other words, we answer the question “by assuming adi-
abaticity, would one find wrong constraints on the main
cosmological parameters, if the underlying ’true’ initial
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FIG. 5: Posterior likelihoods with the CMB&SN data for se-
lected model parameters in the curved mixed model. ’Amp.
par. k0 = 0.01’ indicates the results reported in this paper,
obtained assuming flat priors for the amplitudes α1,2 and γ1,2

at scales k1 = 0.002 Mpc−1 and k2 = 0.05 Mpc−1, and con-
verted to spectral indices and amplitudes at the pivot scale
k0 = 0.01 Mpc−1. ’n-par. k0 = 0.002’ indicates what the re-
sults would be if we assumed flat priors in the spectral index
parametrization and chose the pivot scale k0 = 0.002 Mpc−1.
’n-par. k0 = 0.01’ and ’n-par. k0 = 0.05’ are is the same
as the previous one, but choosing k0 = 0.01 Mpc−1 or k0 =
0.05 Mpc−1, respectively. The raggedness of the k0 = 0.05
curves is due to a small amount of well-fitting samples, after
reweighting by the Jacobian, Eq. (20).

perturbation mode happened to be a correlated mixture
of adiabatic and CDM isocurvature perturbations?”.

Obviously, using the CMB data alone leads to rather
large differences between purely adiabatic and mixed
models, in particular for the posterior likelihoods of ωc, θ,
ΩK , ΩΛ, (Ωm), H0, the age of the Universe, and neff

ad . As
it is unrealistic to assume tight constraints in the mixed
model with CMB data alone, we demonstrate these ef-
fects in Fig. 4 with CMB&SN data.

In the flat case, the pure adiabatic model favors smaller
values of ωb, larger θ, slightly smaller ΩΛ (hence larger
Ωm), slightly smaller H0, and smaller neff

ad . The CDM
density ωc remains unaffected. Interestingly, the scale-
invariant primordial adiabatic perturbations, neff

ad = 1,
are within the 95% CL region if mixed initial conditions
are assumed, while being far in the tail of the posterior
likelihood if pure adiabaticity is assumed.

In the curved case similar conclusions apply for ΩΛ

and neff
ad . However, since now the SN data do not exclude

a few percent positively correlated non-adiabatic contri-
bution in the closed models (with Ωtot ≃ +1.03) and
these models are actually slightly favored over the flat
adiabatic models, larger values of Ωtot will be preferred
compared to the pure adiabatic case. As explained in
Sec. IVB, the mixed model prefers a larger sound hori-
zon angle, θ. This, together with the curvature, affects
in turn ωc and H0.



10

Data Model χ2 αT ωc 100θ ΩK Ωm H0 neff

ad niso

CMB&SN flat adi 3003.9 — 0.116 1.042 — 0.285 69.8 0.956 (0.932, 0.984) —
flat mixed 2999.0 0.002 (-0.03, 0.05) 0.111 1.037 — 0.263 71.7 0.954 (0.930, 1.000) 3.5
curved adi 3002.4 — 0.107 1.042 -0.03 (-0.04, 0.01) 0.370 59.2 0.948 (0.934, 0.984) —
curved mixed 2997.4 0.02 (0.00, 0.07) 0.108 1.051 -0.04 (-0.07, 0.00) 0.380 58.5 0.967 (0.934, 1.009) 2.9

TABLE II: The best-fit χ2 and the best-fit values of selected parameters for the adiabatic and mixed models with the CMB&SN
data. In parenthesis, we indicate the minimal 95% CL interval about the maximum of the corresponding 1d marginalized
likelihood.

D. Best fits and 95% CL intervals

To complete the discussion about the posterior likeli-
hoods, we report in Table II the best-fit χ2 and selected
best-fit parameters as well as 95% CL intervals for some
of these with the CMB&SN data (as seen in Fig. 1, the
CMB&ISW or CMB&SN&ISW data lead to very similar
results). The ∆χ2 between the best-fit flat mixed and flat
adiabatic models is −4.9, while the difference between the
curved models is −5.0. With the CMB alone these would
be −5.3 and −5.2, respectively. Noteworthy, the best-fit
flat ’mixed’ model is almost adiabatic, whereas the best-
fit curved mixed model has clearly non-zero isocurvature
contribution — precisely as one would expect from the
marginalized likelihoods.

As stated qualitatively in the previous subsection, the
determination of spatial curvature and the adiabatic
spectral index are significantly affected by the assumed
initial conditions: assuming mixed initial conditions, a
more closed geometry is favored than in the adiabatic
case, and the flat geometry is excluded at 95% CL. On
the other hand, the scale invariant primordial adiabatic
spectrum is excluded at much more than 95% CL if adia-
batic initial conditions are assumed, whereas — not sur-
prisingly, due to the extra freedom to modify the shape
of the total initial perturbation power spectrum — in
the mixed models the 95% CL interval accommodates
the scale invariant spectrum. This result contradicts the
claim in Ref. [28] that the ’detection’ of red adiabatic
spectrum (neff

ad < 1) would be robust against the inclu-
sion of the CDM isocurvature mode.

The 95% CL upper bound on the primordial contribu-

tion of the CDM isocurvature mode to the total pertur-
bation power at the scale k0 = 0.01 Mpc−1 is α < 22%
in the flat case, and α < 17% in the curved case.

E. Dependence on the pivot scale

We do not report any constraints for niso, since its
posterior likelihood depends drastically on the chosen
parametrization, in particular on the choice of the pivot
scale, as shown in Fig. 5. While with some choices a
scale invariant spectrum, niso = 1, is ’allowed’, in general
fairly large values (niso

>
∼ 1.5) seem to be favored. There

have not been many theoretical models that would pre-
dict such a large isocurvature spectral index, but recently
an explicit axion model, which leads to niso ∼ 2—4, was

constructed in [79].
The posterior likelihoods obtained assuming flat priors

in the amplitude parametrization (which we use for re-
porting the results in this paper), agree in general well
with the more traditional spectral index parametriza-
tion, where flat priors for spectral indices and ampli-
tudes at a pivot scale k0 = 0.01 Mpc−1 are assumed.
However, due to a different integration measure upon
marginalization, the posterior likelihoods for all parame-
ters differ from these, if we choose k0 = 0.002 Mpc−1 or
k0 = 0.05 Mpc−1, which are the most common choices in
the literature. In particular, the difference in the poorly
constrained niso is large. This effect was first realized
in [27], where it was strongly recommended that in the
isocurvature analysis one should adopt k0 ≃ 0.01 Mpc−1,
which leads to the tightest constraints and minimizes the
ambiguity (caused by poorly constrained niso) in deter-
mining the main cosmological parameters. As a further
improvement, the amplitude parametrization, which we
employ here, was suggested. With a large pivot scale
(small k0), a small niso appears to result in, whereas a
small pivot scale (large k0) leads to an apparent peak
of the likelihood at niso > 4. The most recent isocurva-
ture analysis [28] suffers from this problem, since in [28]
k0 = 0.05 Mpc−1 is adopted. From Fig. 5 it is clear why
[28] reports very loose constraints on niso, and claims
that very large spectral tilts seem to be favored.

Apart from the issues with the spectral indices, our
findings for the flat case agree well with [28] where the
recent CMB (WMAP5 & ACBAR), SN (SNLS), and
LSS (SDSS DR5 LRGs) data, and a Gaussian prior
ωb = 0.022 ± 0.006, were employed in flat models, with-
out testing the results with individual combinations of
the data, such as CMB&SN or CMB&LSS. Interestingly,
based on comparing our results with those of [28], the
LSS data do not seem to improve the constraints on the
isocurvature. Moreover, the inclusion of LSS data is not
enough to overcome the unsuitable choice of pivot scale
made in [28], although one would have expected the LSS
to improve the constraints on niso.

V. BAYESIAN EVIDENCES

The main results of this paper, the Bayesian evi-
dences (see e.g. Appendix A and Ref. [80]), are pre-
sented in Table III. There we compare other models
to the flat adiabatic ΛCDM model, giving ∆ ln(ev) =
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Data Model
Flat: adiabatic Non-flat: adiabatic Flat: mixed Non-flat: mixed

ln(ev) ln(ev) ∆ ln(ev) ln(ev) ∆ ln(ev) ln(ev) ∆ ln(ev)
CMB −1370.3 ± 0.3 −1372.9 ± 0.3 −2.6 ± 0.5 −1375.5 ± 0.4 −5.2 ± 0.5 −1376.5 ± 0.4 −6.2 ± 0.5
CMB&SN −1525.7 ± 0.2 −1527.5 ± 0.2 −1.8 ± 0.3 −1531.3 ± 0.3 −5.6 ± 0.4 −1531.9 ± 0.3 −6.2 ± 0.4

— Sqrt param. as above as above as above −1528.6 ± 0.2 −2.9 ± 0.3 −1529.2 ± 0.3 −3.5 ± 0.3
CMB&ISW −1393.7 ± 0.3 −1396.7 ± 0.3 −3.1 ± 0.4 −1397.2 ± 0.3 −3.6 ± 0.4 −1399.8 ± 0.3 −6.1 ± 0.4
CMB&SN&ISW −1548.2 ± 0.3 −1551.6 ± 0.3 −3.3 ± 0.5 −1553.7 ± 0.4 −5.5 ± 0.5 −1555.6 ± 0.3 −7.4 ± 0.4

TABLE III: Bayesian evidences for the flat and non-flat adiabatic and mixed (correlated adiabatic and isocurvature) models
with various combinations of data. Columns ln(ev) stand for the natural logarithm of the evidence (total likelihood). Columns
∆ ln(ev) give the difference of ln(ev) of the considered model compared to the flat adiabatic model with the same combination
of data; ∆ ln(ev) = ln(ev/evflat,adi). Note that a negative ∆ ln(ev) means that the model is disfavored compared to the flat
adiabatic ΛCDM model. ’Sqrt param.’ refers to an alternative mixed model described in Sec VA.

ln(ev) − ln(evflat,adi). Clearly the flat adiabatic ΛCDM
model is favored over curved adiabatic model and over
both flat and curved mixed models. In light of the
current data, the Bayesian model selection decisively
(∆ ln(ev) < −5) disfavors curved correlated isocurva-
ture model. This is because the model selection punishes
strongly for the 5 extra parameters (compared to the adi-
abatic ΛCDM model) whose inclusion does not improve
the fit to the data considerably: see, e.g., the bes-fit χ2

values for CMB&SN in Table II. However, one should
keep in mind that in the mixed models with niso

>
∼ 2,

the main effect on the CMB is a modified 2nd and 3rd
acoustic peak region. Therefore the determination of the
isocurvature contribution is very sensitive to the calibra-
tion of the CMB temperature angular power spectrum in
this region.

A. Evidences in an alternative parametrization

So far we have considered the primordial isocurvature
perturbations in mixed models parametrized by the am-
plitudes α1 and α2 (γ1 and γ2) of the primordial isocurva-
ture (correlation) power spectrum at two different scales.
It should be kept in mind that in Bayesian model selec-
tion, ’the model’ means the theoretical set-up including

the chosen parametrization and the priors of these pa-

rameters. Therefore, by the very first principles of model
selection, the evidences are inevitably sensitive to the
chosen parametrization. To account for this, we repro-
duce a couple of our results for another mixed model,
which is otherwise the same as the previous model, but
where the primordial non-adiabatic components are de-
scribed by amplitudes α̃i (γ̃i) of the primordial pertur-
bations, instead of the amplitudes of the power spectra.
These two parametrizations are related by

αi = α̃2
i , γ1 = sign(γ̃1)γ̃

2
1 , γ2 = γ̃2

2 . (21)

While the posterior likelihoods of the other cosmo-
logical parameters remain almost unchanged, and αT

is affected by much less than 1σ, the different integra-
tion measure affects considerably the global Bayesian ev-
idence. We show the evidences for our new mixed model,

which we call ’sqrt parametrization’ or ’sqrt model’,
in Table III for the CMB&SN data. In light of the
CMB&SN data, the flat (curved) mixed sqrt model is
within 2.9 (3.5) from the flat adiabatic ΛCDM model,
corresponding to odds of 1:18 (1:33). Therefore, there is
strong — but not decisive — evidence against the sqrt
model. In particular, taking into account the error esti-
mates of ∆ ln(ev), the flat mixed sqrt model is not signifi-
cantly disfavored when compared to the curved adiabatic
ΛCDM model. As their evidence difference −1.1 corre-
sponds to odds of 1:3, this suggests that in future stud-
ies, isocurvature should be treated on a similar footing
as checking for curved adiabatic models.

VI. CONCLUSIONS

In this paper we have presented a new likelihood and
model selection analysis allowing for a correlated cold
dark matter isocurvature mode of primordial perturba-
tions, for the first time including spatial curvature.

Taking first a frequentist’s point of view, we have
shown in the light of posterior likelihoods that models
with a small fraction of isocurvature (≃ 3%) are still fa-
vored by a CMB-only analysis, and including the Type
Ia Supernovae or the integrated Sachs-Wolfe effect data
does not change this result in the spatially curved Uni-
verse. Up to 7% positively correlated non-adiabatic con-
tribution is allowed at 95% CL, whereas the pure adia-
batic model lies near the boundary of the 95% CL region.
In the flat case, we discover the previously known result
that the SN data cut out the best-fit isocurvature models.
Interestingly this does not happen in the curved case as
indicated in Fig. 3. The ISW data constrain the vacuum
energy density and curvature of the Universe in a com-
plementary way to CMB or SN. Therefore the inclusion
of the ISW data in the analysis sets more stringent con-
straints on the curvature, but does not seem to tighten
the constraints on isocurvature.

We recommend including the spatial curvature in the
isocurvature analysis of future CMB data (combined with
some other probes of curvature, dark energy density, or
Hubble parameter), since assuming flatness of the Uni-
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verse considerably — and misleadingly — biases the re-
sults toward pure adiabaticity.

The Bayesian model selection, which heavily penalizes
for any “unnecessary” extra degrees of freedom, disfavors
strongly or decisively — depending on the parametriza-
tion of primordial perturbations — the mixture of cor-
related adiabatic and isocurvature primordial perturba-
tions, in light of the current data. However, one should
keep in mind that this result is very sensitive to the cal-
ibration of the CMB data around the second and third
acoustic peaks, and therefore future data, e.g. from the
Planck satellite, may either weaken or strengthen the
constraints.

From a theoretical point of view, other scenarios that
modify the second and third acoustic peak region typi-
cally involve other types of isocurvature, such as a dy-
namical contribution from cosmic strings [81]. In ad-
dition, the kinematic Sunyaev-Zel’dovich effect modifies
the same region [82]. However, Planck should be able
to distinguish between these and the mixed adibatic and
CDM isocurvature model, since the former produce just
a single ’bump’ of extra angular power, whereas the lat-
ter modifies the angular power spectrum in a more com-
plex way at a few percent level, as shown in figure 2 in
Ref. [48].

Although we have focused on isocurvature, we have
also constrained the geometry of the Universe in the pure
adiabatic model, finding that with the CMB&SN data
the Bayesian model selection significantly (with odds of
1:6) disfavors spatially curved adiabatic model compared
to the flat model. This constraint is tightened from ’sig-
nificant’ to ’strong’ (with odds of 1:27) when we add the
ISW data into the analysis.

It seems likely that the Bayesian model selection, with
near-future data, could decisively rule out both the spa-
tially curved geometry of the Universe and the mixed
model, irrespectively of the parametrization issues, while
the frequentist’s approach may continue to slightly ’favor’
these models over the flat ΛCDM model.

However, it should be noticed that even the future
CMB temperature anisotropy data alone are unlikely to
constrain the mixed models with niso

<
∼ 2–3 better than

the current WMAP data, as first pointed out in [83]
(compare also figures 2c and 13 in [27], and see figure 1
in [55]). The reason is that on sub-horizon (sub-Hubble)
scales before last scattering, the CDM density pertur-
bations resulting from the primordial CDM isocurvature
mode are damped by k compared to those ones result-
ing from the adiabatic primordial mode. (Note that
in the power spectrum this damping is ∝ k2, and in
the angular power ∝ l2). Therefore in order to sig-
nificantly modify the predominantly adiabatic angular
power spectrum above the multipole l >

∼ 200, one needs
a large isocurvature spectral index. Consequently, mod-
els with niso

<
∼ 2 would modify the anisotropy spec-

trum only at low multipoles, say l <
∼ 200, but here the

temperature data are already now cosmic-variance lim-
ited. In particular, the future CMB temperature data
can not significantly improve the constraints on a model
where all the components share the same spectral index
(niso = nad1 = nad2 = ncor = n ≈ 1), such as in [76].
Nevertheless, new accurate polarization data will help in
reducing the uncertainty caused by the cosmic variance
and in breaking the parameter degeneracies. Polarization
data together with more accurate data on high multipoles
also fix the background parameters better, leading indi-
rectly to tighter constraints on isocurvature. As shown
in [55], one can thus expect a moderate improvement
on the constraints even for models with nearly scale-
invariant isocurvature spectrum. Our main forecast, e.g.,
for Planck, is that having more accurate data on high
multipoles, in particular helps to constrain the isocurva-
ture spectral index in models where it could be niso

>
∼ 2

(in this paper more than 50% of the well-fitting mixed
models, see Fig. 1). In addition, Planck, as well as future
supernovae data, will constrain the background param-
eters better and thus indirectly improve the constraints
on the isocurvature contribution by breaking the degen-
eracies.

The prospects of the ISW data are more pessimistic.
We have checked with our best-fit models that about 10
times more accurate ISW data would be needed if one
was to directly discern between the perturbation spectra
of the pure adiabatic and the mixed model, even with
a large niso. Since the required accuracy is more than
the theoretical bound for the signal to noise [67], the
role of the ISW data will remain limited to constraining
the background, and thus only indirectly the isocurvature
contribution.
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APPENDIX A: ON THE SAMPLING
TECHNIQUE

1. Bayesian inference

Bayesian statistics provides a good method to ap-
proach the two common problems of parameter estima-
tion and model comparison. It is based on Bayes’ the-
orem which states that for a set of parameters Θ, in a
model M , with data D it holds

P(Θ) =
L(Θ)Π(Θ)

Z(M)
, (A1)

where the posterior probability distribution of the param-
eters is P(Θ) = P (Θ|D,M), the likelihood is L(Θ) =
P (D|Θ, M), the prior is Π(Θ) = P (Θ|M) and the evi-
dence is Z(M) = P (D|M).

When estimating parameters for a given model, the
standard practice is to ignore the evidence factor, and
to estimate the posteriors using the standard MCMC
method.

For model selection the evidence is instead crucial,
since the ratio of evidences reflects the relative proba-
bilities of the models. The evidence can be computed by
the integration over all the dimensions D of the param-
eter space

Z(M) =

∫

L(Θ)Π(Θ)dD
Θ. (A2)

This expression incorporates automatically Occam’s
principle of simplicity by penalizing models with extra
parameters. When comparing two models A and B,
the important quantity is the logarithmic difference in
the evidences, also known as Bayes factor: ∆ lnZ =
lnZ(A) − lnZ(B). Then the model selection is quali-
tatively achieved using Jeffreys scale, which states that
∆ lnZ < 1 is not significant, 1 < ∆lnZ < 2.5 is sig-
nificant, 2.5 < ∆lnZ < 5 is strong, and ∆ lnZ > 5
is decisive. In the main text we call lnZ as ln(ev) for
clarity.

The standard method of thermodynamic integration,
which is generally used to calculate the evidence, is very
intensive and expensive, typically requiring the evalua-
tion of the likelihoods for 106—107 models, and has been
hindering the widespread use of Bayesian model compar-
ison.

2. Nested sampling

The aforementioned problems are conveniently solved
by the nested sampling method [84]. In this technique,
the integral of Eq. (A2) is replaced by a simpler 1-d in-
tegral

Z(M) =

∫ 1

0

L(X)dX, (A3)
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where the new variable X represents the prior volume,
identical to the parameter space volume in case of uni-
form priors, and is defined by dX = Π(Θ)dD

Θ, i.e.

X(λ) =

∫

L(Θ)>λ

Π(Θ)dD
Θ, (A4)

where the integration is over the region contained in the
iso-likelihood contour defined by λ. Thus the problem
of calculating the evidence is reduced to the evaluation
of the likelihoods Lj at a series of points of decreasing
value Xj , so that the 1-d integration of Eq. (A3) can be
performed by summation as

Z(M) =

Nmax
∑

i=1

Liwi, (A5)

where the weights wi can be given e.g. by a simple trape-
zoidal rule.

In more detail, the sampling of the Xj can start with
a uniform sampling of N points (often called as ’live
points’) within the priors, and then works its way up
the likelihood surface by discarding at each iteration the
lowest likelihood point and replacing it with a higher one.
The process is terminated when some accuracy criterion
is satisfied.

Once the evidence is known, the posteriors can be eas-
ily evaluated as a byproduct by using the set of points
discarded at each iteration, giving each point a weight

pi =
Liwi

Z
. (A6)

3. MultiNest

After the conceptual introduction by [84], this method
has been first applied to cosmology in a simple case by

[85]. Its most sensitive part, the sampling technique, has
been subsequently greatly refined by [86] and [87] to min-
imize the required number of likelihood evaluations and
to deal efficiently with a series of possible pathologies,
such as multi-modal posterior distributions and strongly
curved parameter degeneracies.

Finally, an even more robust and efficient de-
velopment has been released by [58] for appli-
cations in cosmology, astronomy and particle
physics. The package, available for public use from
http://www.mrao.cam.ac.uk/software/multinest, con-
tains an easily usable interface for the CAMB/Cosmomc
cosmology code [62, 63]. The user has simply to tune
three parameters: the tolerance (accuracy), the number
of live points N , and the maximum efficiency e, which
sets how aggressively (or conservatively) we want the
reduce the parameter space at each iteration. Another
very attractive feature of this method is that any need
of a proposal matrix for the parameters’ covariance, a
well known hassle for MCMC users, is now completely
superseded.

The analysis presented in this paper would have been
impossible with the conventional MCMC method. With
MultiNest, the curved cases, which were the tough-
est, took 30 000 — 70 000 CPUh each. The exten-
sive comparisons presented in this paper took a total
of ∼ 500 000 CPUh, but this was doable in large super
computers, since the MultiNest algorithm scaled linearly
(with MPI parallelization) up to >

∼ 100 CPUs in our case
and CAMB, which produces the theoretical predictions,
scaled well up to 4 — 8 CPUs with openMP. An efficient
configuration turned out to be ∼ 100 MPI × 6 openMP
threads in the main runs.

In most of the cases reported in this paper we set the ef-
ficiency parameter in MultiNest to 0.3, the tolerance (ac-
curacy) parameter to 0.5, and the number of live points
to N = 400 .

http://www.mrao.cam.ac.uk/software/multinest

