77 research outputs found

    Beam Dynamics Studies for the Spiral-2 Project

    Get PDF
    JACoW web site http://accelconf.web.cern.ch/AccelConf/e06The SPIRAL-2 superconducting linac driver, which aims to deliver 5 mA, 20 A.MeV deuterons and 1 mA, 14.5 A.MeV q/A=1/3 heavy ions, is now entering the construction phase. It is composed of an injector composed of two ECR sources entering a 88 MHz RFQ, followed by a superconducting section based on independently phased quarter-wave cavities with warm focusing. This paper presents the status of the beam dynamics studies recently performed during this construction phase: consolidation and freezing of the linac design, update of the mass separation system or analysis of the proton capability

    Flat beams and application to the mass separation of radioactive beams

    Get PDF
    JaCoW web site http://accelconf.web.cern.ch/AccelConf/e06The notion of flat beam is now well established and has been proven theoretically and experimentally with applications for linear colliders. In this paper, we propose a new and simple demonstration of the "flat beam theorem", and a possible application in the frame of radioactive ion beams (RIB) production. It consists in using a magnetized multi-specie heavy ion beam extracted from a high frequency ECR source, decoupling the transverse phase planes in such a way to obtain a very small emittance in the horizontal one, and using a dipole to separate the isotopes. A design of such a transport and separation line will be proposed and commented

    End-to-End Beam Dynamics for CERN LINAC4

    Get PDF
    LINAC 4 is a normal conducting H- linac which aims to intensify the proton flux available for the CERN accelerator complex. This injector is designed to accelerate a 65 mA beam of H- ions up to 160 MeV for injection into the CERN Proton Synchrotron Booster. The acceleration is done in three stages : up to 3 MeV with a Radio Frequency Quadrupole (the IPHI RFQ) operating at 352 MHz, then continued to 90 MeV with drift-tube structures at 352 MHz (conventional Alvarez and Cell Coupled Drift Tube Linac) and, finally with a Side Coupled Linac at 704 MHz. The accelerator is completed by a chopper line at 3 MeV and a transport and matching line to the PS booster. After the overall layout was determined based on general consideration of beam dynamics and RF, a global optimisation based on end-to-end simulation has refined some design choices. The results and lessons learned from the end-to-end simulations are reported in this paper

    Optical studies for the super separator spectrometer S3

    Get PDF
    International audienceS3 (Super Separator Spectrometer) [1] is a future device designed for experiments with the high intensity heavy ion stable beams of SPIRAL2 [2] at GANIL (Caen, France). It will include a target resistant to these very high intensities, a first stage momentum achromat for primary beam extraction and suppression, a second stage mass spectrometer and a dedicated detection system. This spectrometer includes large aperture quadrupole triplets with embedded multipolar corrections. To enable the primary beam extraction one triplet has to be opened on one side, which requires an appropriate design of such a multipolar magnet. The final mass separation power required for S3 needs a careful design of the optics with a high level of aberration correction. Multiple symmetric lattices were studied for this purpose. A 4-fold symmetric lattice and the achieved results are described in this paper

    Design of an interaction region with head-on collisions for the ILC

    Get PDF
    An interaction region (IR) with head-on collisions is considered as an alternative to the baseline configuration of the International Linear Collider (ILC) which includes two IRs with finite crossing-angles (2 and 20 mrad). Although more challenging for the beam extraction, the head-on scheme is favoured by the experiments because it allows a more convenient detector configuration, particularly in the forward region. The optics of the head-on extraction is revisited by separating the e+ and e- beams horizontally, first by electrostatic separators operated at their LEP nominal field and then using a defocusing quadrupole of the final focus beam line. In this way the septum magnet is protected from the beamstrahlung power. Newly optimized final focus and extraction optics are presented, including a first look at post-collision diagnostics. The influence of parasitic collisions is shown to lead to a region of stable collision parameters. Disrupted beam and beamstrahlung photon losses are calculated along the extraction elements

    Conceptual design of the SPL II: A high-power superconducting HH^- linac at CERN

    Get PDF
    An analysis of the revised physics needs and recent progress in the technology of superconducting RF cavities have led to major changes in the speci cation and in the design for a Superconducting Proton Linac (SPL) at CERN. Compared with the rst conceptual design report (CERN 2000012) the beam energy is almost doubled (3.5 GeV instead of 2.2 GeV), while the length of the linac is reduced by 40% and the repetition rate is reduced to 50 Hz. The basic beam power is at a level of 45MW and the approach chosen offers enough margins for upgrades. With this high beam power, the SPL can be the proton driver for an ISOL-type radioactive ion beam facility of the next generation (`EURISOL'), and for a neutrino facility based on superbeam C beta-beam or on muon decay in a storage ring (`neutrino factory'). The SPL can also replace the Linac2 and PS Booster in the low-energy part of the CERN proton accelerator complex, improving signi cantly the beam performance in terms of brightness and intensity for the bene t of all users including the LHC and its luminosity upgrade. Decommissioned LEP klystrons and RF equipment are used to provide RF power at a frequency of 352.2 MHz in the lowenergy part of the accelerator. Beyond 90 MeV, the RF frequency is doubled to take advantage of more compact normal-conducting accelerating structures up to an energy of 180 MeV. From there, state-ofthe- art, high-gradient, bulk-niobium superconducting cavities accelerate the beam up to its nal energy of 3.5 GeV. The overall design approach is presented, together with the progress that has been achieved since the publication of the rst conceptual design report

    The SPL (II) at CERN, a Superconducting 3.5 GeV H- Linac

    Get PDF
    A revision of the physics needs and recent progress in the technology of superconducting (SC) RF cavities have triggered major changes in the design of a SC H-linac at CERN. With up to 5MW beam power, the SPL can be the proton driver for a next generation ISOL-type radioactive beam facility (âEURISOLâ) and/or supply protons to a neutrino () facility (conventional superbeam + beta-beam or -factory). Furthermore the SPL can replace Linac2 and the PS booster (PSB), improving significantly the beam performance in terms of brightness, intensity, and reliability for the benefit of all proton users at CERN, including LHC and its luminosity upgrade. Compared with the first conceptual design, the beam energy is almost doubled (3.5GeV instead of 2.2 GeV) while the length is reduced by 40%. At a repetition rate of 50 Hz, the linac reuses decommissioned 352.2MHz RF equipment from LEP in the low-energy part. Beyond 90MeV the RF frequency is doubled, and from 180MeV onwards high-gradient SC bulkniobium cavities accelerate the beam to its final energy of 3.5GeV. This paper presents the overall design approach, together with the technical progress since the first conceptual design in 2000
    corecore