433 research outputs found

    Artemisia Spp. Derivatives for COVID-19 Treatment: Anecdotal Use, Political Hype, Treatment Potential, Challenges, and Road Map to Randomized Clinical Trials

    Get PDF
    The world is currently facing a novel COVID-19 pandemic caused by SARS-CoV-2 that, as of July 12, 2020, has caused a reported 12,322,395 cases and 556,335 deaths. To date, only two treatments, remdesivir and dexamethasone, have demonstrated clinical efficacy through randomized controlled trials (RCTs) in seriously ill patients. The search for new or repurposed drugs for treatment of COVID-19 continues. We have witnessed anecdotal use of herbal medicines, including Artemisia spp. extracts, in low-income countries, and exaggerated claims of their efficacies that are not evidence based, with subsequent political controversy. These events highlight the urgent need for further research on herbal compounds to evaluate efficacy through RCTs, and, when efficacious compounds are identified, to establish the active ingredients, develop formulations and dosing, and define pharmacokinetics, toxicology, and safety to enable drug development. Derivatives from the herb Artemisia annua have been used as traditional medicine over centuries for the treatment of fevers, malaria, and respiratory tract infections. We review the bioactive compounds, pharmacological and immunological effects, and traditional uses for Artemisia spp. derivatives, and discuss the challenges and controversies surrounding current efforts and the scientific road map to advance them to prevent or treat COVID-19

    Optimization of Topical Therapy for Leishmania major Localized Cutaneous Leishmaniasis Using a Reliable C57BL/6 Model

    Get PDF
    When initiating the cutaneous disease named cutaneous leishmaniasis (CL), Leishmania parasites develop within the parasitophorous vacuoles of phagocytes residing in and/or recruited to the dermis, a process leading to more or less chronic dermis and epidermis-damaging inflammatory processes. Topical treatment of CL could be a mainstay in its management. Any improvements of topicals, such as new vehicles and shorter optimal contact regimes, could facilitate their use as an ambulatory treatment. Recently, WR279396, a third-generation aminoglycoside ointment, was designed with the aim to provide stability and optimal bioavailability for the molecules expected to target intracellular Leishmania. Two endpoints were expected to be reached: i) accelerated clearance of the maximal number of parasites, and ii) accelerated and stable repair processes without scars. A mouse model of CL was designed: it relies on the intradermal inoculation of luciferase-expressing Leishmania, allowing for in vivo bioluminescence imaging of the parasite load fluctuation, which can then be quantified simultaneously with the onset and resolution of clinical signs. These quantitative readout assays, deployed in real time, provide robust methods to rapidly assess efficacy of drugs/compounds i) to screen treatment modalities and ii) allow standardized comparison of different therapeutic agents

    Unravelling the proteomic landscape of extracellular vesicles in prostate cancer by density-based fractionation of urine

    Get PDF
    Extracellular vesicles (EV) are increasingly being recognized as important vehicles of intercellular communication and promising diagnostic and prognostic biomarkers in cancer. Despite this enormous clinical potential, the plethora of methods to separate EV from biofluids, providing material of highly variable purity, and lacking knowledge regarding methodological repeatability pose a barrier to clinical translation. Urine is considered an ideal proximal fluid for the study of EV in urological cancers due to its direct contact with the urogenital system. We demonstrate that density-based fractionation of urine by bottom-up Optiprep density gradient centrifugation separates EV and soluble proteins with high specificity and repeatability. Mass spectrometry-based proteomic analysis of urinary EV (uEV) in men with benign and malignant prostate disease allowed us to significantly expand the known human uEV proteome with high specificity and identifies a unique biological profile in prostate cancer not uncovered by the analysis of soluble proteins. In addition, profiling the proteome of EV separated from prostate tumour conditioned medium and matched uEV confirms the specificity of the identified uEV proteome for prostate cancer. Finally, a comparative proteomic analysis with uEV from patients with bladder and renal cancer provided additional evidence of the selective enrichment of protein signatures in uEV reflecting their respective cancer tissues of origin. In conclusion, this study identifies hundreds of previously undetected proteins in uEV of prostate cancer patients and provides a powerful toolbox to map uEV content and contaminants ultimately allowing biomarker discovery in urological cancers
    corecore