13 research outputs found
Towards a quantitative understanding of the MITF-PIAS3-STAT3 connection
<p>Abstract</p> <p>Background</p> <p>Expression of the two transcription factors microphthalmia-associated transcription factor (MITF) and signal transducer and activator of transcription 3 (STAT3) are tightly connected to cell proliferation and survival, and are important for melanocyte development. The co-regulation of MITF and STAT3 via their binding to a common inhibitor Protein Inhibitor of Activated STAT3 (PIAS3) is intriguing. A better quantitative understanding of this regulation is likely to be important for elucidation of the melanocyte biology.</p> <p>Results</p> <p>We present a mathematical model describing the MITF-PIAS3-STAT3 signalling network. A default parameter set was developed, partly informed by the literature and partly by constraining the model to mimic reported behavioural features of the system. In addition, a set of experiment-specific parameters was derived for each of 28 experiments reported in the literature. The model seems capable of accounting for most of these experiments in terms of observed temporal development of protein amounts and phosphorylation states. Further, the results also suggest that this system possesses some regulatory features yet to be elucidated.</p> <p>Conclusions</p> <p>We find that the experimentally observed crosstalk between MITF and STAT3 via PIAS3 in melanocytes is faithfully reproduced in our model, offering mechanistic explanations for this behaviour, as well as providing a scaffold for further studies of MITF signalling in melanoma.</p
Understanding the Melanocyte Distribution in Human Epidermis: An Agent-Based Computational Model Approach
<div><p>The strikingly even color of human skin is maintained by the uniform distribution of melanocytes among keratinocytes in the basal layer of the human epidermis. In this work, we investigated three possible hypotheses on the mechanism by which the melanocytes and keratinocytes organize themselves to generate this pattern. We let the melanocyte migration be aided by (1) negative chemotaxis due to a substance produced by the melanocytes themselves, or (2) positive chemotaxis due to a substance produced by keratinocytes lacking direct physical contact with a melanocyte, or (3) positive chemotaxis due to a substance produced by keratinocytes in a distance-to-melanocytes dependent manner. The three hypotheses were implemented in an agent-based computational model of cellular interactions in the basal layer of the human epidermis. We found that they generate mutually exclusive predictions that can be tested by existing experimental protocols. This model forms a basis for further understanding of the communication between melanocytes and other skin cells in skin homeostasis.</p></div
Melanocyte density under different parameter settings.
<p>The three mechanisms for guiding melanocyte growth and migration were tested for their ability to establish a uniform melanocyte distribution at 5%, 10%, 25%, and 40% melanocyte densities. The temporal developments of the melanocyte density throughout the 10 days of simulation are shown. The simulations were repeated 12 times for each of the four parameter settings.</p
The observation area of the virtual dish after ended simulations.
<p>Simulations were performed with parameters set to establish four different melanocyte densities as indicated, for all three mechanisms proposed. All simulations were performed in 12 replicates; one representative image is shown for each parameter setting and mechanism.</p
Strength of exclusivity: KolmogorovāSmirnov test on the data plotted in Figure 4.
<p>Strength of exclusivity: KolmogorovāSmirnov test on the data plotted in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0040377#pone-0040377-g004" target="_blank">Figure 4</a>.</p
Signal gradient as produced by our diffusion model.
<p>Two different views of three different virtual cell cultures are shown. In the left panels the cells are colored according to cell type; keratinocytes blue and melanocytes red, while in the right panels cells are colored according to strength of signal (lighter color equals higher concentration). The signal substance diffuses from cell to cell and degrades according to our diffusion model. In these simulations, we have restricted the melanocytes to reside at the outer rim of the dish in order to visualize the global gradient towards the middle. In A, the cells are colored according to the concentration of signal substance R that is produced by all melanocytes at a constant rate. In B and C, the cells are colored according to the concentration of the attracting signal substance A. The gradient in B is generated by production of signal in all keratinocytes not in contact with a melanocyte (A, binary), while in C the gradient is set up by production of signal in all keratinocytes as a function of the strength of the signal R (A, R-dependent).</p
Melanocyte uniformity measurements.
<p>As quantitative measurements of the three different mechanismsā ability to distribute melanocytes evenly, we counted the number of melanocytes with three or more melanocyte neighbors (top), and the relative standard deviation of the distance from all melanocytes to the nearest other melanocyte (bottom). All measurements are given as mean and standard deviation of 12 repetitions. A KolmogorovāSmirnov test was performed to test for significant differences between the hypotheses at each parameter setting of which the results are given in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0040377#pone-0040377-t001" target="_blank"><b>Table 1</b></a>.</p