14 research outputs found

    Acute neurological care in north-east Germany with telemedicine support (ANNOTeM): protocol of a multi-center, controlled, open-label, two-arm intervention study

    Get PDF
    Background: Both diagnosis and treatment of neurological emergencies require neurological expertise and are time-sensitive. The lack of fast neurological expertise in regions with underserved infrastructure poses a major barrier for state-of-the-art care of patients with acute neurological diseases and leads to disparity in provision of health care. The main purpose of ANNOTeM (acute neurological care in North East Germany with telemedicine support) is to establish effective and sustainable support structures for evidence based treatments for stroke and other neurological emergencies and to improve outcome for acute neurological diseases in these rural regions. Methods: A “hub-and-spoke” network structure was implemented connecting three academic neurological centres (“hubs”) and rural hospitals (“spokes”) caring for neurological emergencies. The network structure includes (1) the establishment of a 24/7 telemedicine consultation service, (2) the implementation of standardized operating procedures (SOPs) in the network hospitals, (3) a multiprofessional training scheme, and (4) a quality management program. Data from three major health insurance companies as well as data from the quality management program are being collected and evaluated. Primary outcome is the composite of first time of receiving paid outpatient nursing care, first time of receiving care in a nursing home, or death within 90 days after hospital admission. Discussion: Beyond stroke only few studies have assessed the effects of telemedically supported networks on diagnosis and outcome of neurological emergencies. ANNOTeM will provide information whether this approach leads to improved outcome. In addition, a health economic analysis will be performed. Study registration: German Clinical Trials Register DRKS00013067, date of registration: November 16 th, 2017, URL: http://www.drks.de/DRKS0001306

    Evaluation of a Multilocus Indel DNA Region for the Detection of the Wheat Tan Spot Pathogen Pyrenophora tritici-repentis

    No full text
    Tan spot or yellow (leaf) spot disease of wheat (Triticum spp.) is caused by Pyrenophora tritici-repentis, a necrotrophic fungal pathogen that is wide-spread throughout the main wheat-growing regions in the world. This disease is currently the single most economically important crop disease in Australia. IN this study, a real-time quantitative polymerase chain reaction (qPCR) assay was developed as a diagnostic tool to detect the pathogen on wheat foliar tissue. A multicopy locus (PtrMulti) present in the P. tritici-repentis genome was assessed for its suitability as a qPCR probe. The primer pair PtrMulti_F/R that targets the region was evaluated with respect to species specificity and sensitivity. A PtrMulti SYBR qPCR assay was developed and proved to be suitable for the identification and relative quantification of P. tritici-repentis with a detection limi of DNA levels at <0.1 pg. Variation of the PtrMulti copy number between the geographical representatives of P. tritici-repentis strains examined was minimal, with the range of 63 to 85 copies per genome. For naturally infected wheat field samples, the incidence of P. tritici-repentis DNA on leaves quantified by qPCR varied up to 1,000-fold difference in the concentration, with a higher incidence of DNA on the younger leaves in the absence of visible tan spot lesions. These results demonstrate the potential of PtrMulti probe to be used for early detection and rapid screening of tan spot disease on wheat plants

    Stroke Admissions, Stroke Severity, and Treatment Rates in Urban and Rural Areas During the COVID-19 Pandemic

    No full text
    Background: Many regions worldwide reported a decline of stroke admissions during the early phase of the coronavirus disease 2019 (COVID-19) pandemic. It remains unclear whether urban and rural regions experienced similar declines and whether deviations from historical admission numbers were more pronounced among specific age, stroke severity or treatment groups. Methods: We used registry datasets from (a) nine acute stroke hospitals in Berlin, and (b) nine hospitals from a rural TeleNeurology network in Northeastern Germany for primary analysis of 3-week-rolling average of stroke/TIA admissions before and during the COVID-19 pandemic. We compared course of stroke admission numbers with regional cumulative severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) infections. In secondary analyses, we used emergency department logs of the Berlin CharitĂ© University hospital to investigate changes in age, stroke severity, and thrombolysis/thrombectomy frequencies during the early regional Sars-CoV-2 spread (March and April 2020) and compared them with preceding years. Results: Compared to past years, stroke admissions decreased by 20% in urban and 20-25% in rural hospitals. Deviations from historical averages were observable starting in early March and peaked when numbers of regional Sars-CoV-2 infections were still low. At the same time, average admission stroke severity and proportions of moderate/severe strokes (NIHSS >5) were 20 and 20–40% higher, respectively. There were no relevant deviations observed in proportions of younger patients (<65 years), proportions of patients with thrombolysis, or number of thrombectomy procedures. Stroke admissions at CharitĂ© subsequently rebounded and reached near-normal levels after 4 weeks when the number of new Sars-CoV-2 infections started to decrease. Conclusions: During the early pandemic, deviations of stroke-related admissions from historical averages were observed in both urban and rural regions of Northeastern Germany and appear to have been mainly driven by avoidance of admissions of mildly affected stroke patients

    Response of the Pacific oyster Crassostrea gigas to hypoxia exposure under experimental conditions.

    No full text
    International audienceThe molecular response to hypoxia stress in aquatic invertebrates remains relatively unknown. In this study, we investigated the response of the Pacific oyster Crassostrea gigas to hypoxia under experimental conditions and focused on the analysis of the differential expression patterns of specific genes associated with hypoxia response. A suppression subtractive hybridization method was used to identify specific hypoxia up- and downregulated genes, in gills, mantle and digestive gland, after 7-10 days and 24 days of exposure. This method revealed 616 different sequences corresponding to 12 major physiological functions. The expression of eight potentially regulated genes was analysed by RT-PCR in different tissues at different sampling times over the time course of hypoxia. These genes are implicated in different physiological pathways such as respiration (carbonic anhydrase), carbohydrate metabolism (glycogen phosphorylase), lipid metabolism (delta-9 desaturase), oxidative metabolism and the immune system (glutathione peroxidase), protein regulation (BTF3, transcription factor), nucleic acid regulation (myc homologue), metal sequestration (putative metallothionein) and stress response (heat shock protein 70). Stress proteins (metallothioneins and heat shock proteins) were also quantified. This study contributes to the characterization of many potential genetic markers that could be used in future environmental monitoring, and could lead to explore new mechanisms of stress tolerance in marine mollusc species
    corecore