9,447 research outputs found

    Optical frequency tripling with improved suppression and sideband selection

    Get PDF
    Journal Article, Impact factor:3.749A novel optical dispersion tolerant millimetre-wave radio-over-fibre system using optical frequency tripling technique with enhanced and selectable sideband suppression is demonstrated. The implementation utilises cascaded optical modulators to achieve either an optical single sideband (OSSB) or double sideband-suppressed carrier (DSB-SC) signal with high sideband suppression. Our analysis and simulation results indicate that the achievable suppression ratio of this configuration is only limited by other system factors such as optical noise and drifting of the operational conditions. The OSSB transmission system performance is assessed experimentally by the transport of 4 WiMax channels modulating a 10 GHz optical upconverted RF carrier as well as for optical frequency doubling and tripling. The 10 GHz and tripled carrier at 30 GHz are dispersion tolerant resulting both in an average relative constellation error (RCE) of -28.7 dB after 40 km of fibre. (C)2011 Optical Society of AmericaFundação para a Ciência e Tecnologi

    Superconductivity in correlated disordered two-dimensional electron gas

    Full text link
    We calculate the dynamic effective electron-electron interaction potential for a low density disordered two-dimensional electron gas. The disordered response function is used to calculate the effective potential where the scattering rate is taken from typical mobilities from recent experiments. We investigate the development of an effective attractive pair potential for both disordered and disorder free systems with correlations determined from existing numerical simulation data. The effect of disorder and correlations on the superconducting critical temperature Tc is discussed.Comment: 4 pages, RevTeX + epsf, 4 figure

    Driven Intrinsic Localized Modes in a Coupled Pendulum Array

    Full text link
    Intrinsic localized modes (ILMs), also called discrete breathers, are directly generated via modulational instability in an array of coupled pendulums. These ILMs can be stabilized over a range of driver frequencies and amplitudes. They are characterized by a pi-phase difference between their center and wings. At higher driver frequencies, these ILMs are observed to disintegrate via a pulsating instability, and the mechanism of this breather instability is investigated.Comment: 5 pages, 6 figure

    Mesoscopic Transport: The Electron-Gas Sum Rules in a Driven Quantum Point Contact

    Full text link
    The nature of the electron gas is characterized, above all, by its multi-particle correlations. The conserving sum rules for the electron gas have been thoroughly studied for many years, and their centrality to the physics of metallic conduction is widely understood (at least in the many-body community). We review the role of the conserving sum rules in mesoscopic transport, as normative criteria for assessing the conserving status of mesoscopic models. In themselves, the sum rules are specific enough to rule out any such theory if it fails to respect the conservation laws. Of greater interest is the capacity of the compressibility sum rule, in particular, to reveal unexpected fluctuation effects in nonuniform mesoscopic structures.Comment: TeX, 11pp, no fi
    corecore