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Abstract: A novel optical dispersion tolerant millimetre-wave radio-over-
fibre system using optical frequency tripling technique with enhanced and 
selectable sideband suppression is demonstrated. The implementation 
utilises cascaded optical modulators to achieve either an optical single 
sideband (OSSB) or double sideband-suppressed carrier (DSB-SC) signal 
with high sideband suppression. Our analysis and simulation results 
indicate that the achievable suppression ratio of this configuration is only 
limited by other system factors such as optical noise and drifting of the 
operational conditions. The OSSB transmission system performance is 
assessed experimentally by the transport of 4 WiMax channels modulating 
a 10 GHz optical upconverted RF carrier as well as for optical frequency 
doubling and tripling. The 10 GHz and tripled carrier at 30 GHz are 
dispersion tolerant resulting both in an average relative constellation error 

(RCE) of 28.7 dB after 40 km of fibre. 
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1. Introduction 

The development of millimetre-wave (mm-wave) (30-300GHz) fibre supported transport 
networks to enable mobile network backhaul and pico-cellular wireless personal area network 
(WPAN) architectures with simplified antenna units are a vital component of next generation 
access networks [1]. For distance of <<1 km between antenna units, compared to 5-10 km for 
current systems, simplistic base station architecture and high optical component reuse is 
necessary for cost effectiveness. 

For dispersion penalty mitigation at mm-wave frequencies, techniques such as optical 
single sideband (OSSB) are used, which typically involve the phase and frequency locking of 
two optical sources separated by the millimetre wave frequency [2] or self-heterodyne 
techniques using a single optical source modulated by a Mach-Zehnder modulator (MZM) 
either in a double sideband suppressed optical carrier (DSB-SC) configuration [3] or in a 
suppressed optical sideband configuration [4]. In self-heterodyne techniques the mixing of the 
two completely correlated optical sidebands upon photodetection produce a mm-wave signal 
with spectral linewidth only limited by the linewidth of the RF signal that drives the MZM. 
DSB-SC besides providing robustness against chromatic dispersion also acts as a frequency 
doubler. This last characteristic is particularly important since it allows the use of MZMs with 
a bandwidth of half of the required frequency of the millimetre-wave signal. DSB-SC 
upconversion technique has also been extensively investigated [5, 6] and various approaches 
for DSB-SC generation have been evaluated [7] analytically to show carrier suppression up to 
53 dB. The technique proposed in this paper shows carrier/sideband suppression higher than 
80dB (simulated) and 45-50 dB (experimentally demonstrated). This technique is different as 
it is not only capable of generating both DSB-SC and OSSB but also offers flexibility to use 
both electrical and/or optical modulation, dependant on the architecture. In combination with 
the colourless nature of the setup, the proposed technique offers a generic solution suitable for 
various architectural requirements. Other frequency upconversion techniques that take 
advantage of the intrinsic nonlinear characteristics of MZMs have been developed, either to 
enable operation with cheap low bandwidth MZM or to provide multiband operation [8, 9]. 
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The robustness of self-heterodyne techniques against dispersion is limited by the finite 
extinction ratio (ER) encountered in commercially available MZMs which is typically 20-35 
dB. The effect of ER arising from the imperfect power splitting ratio at the MZ Y-splitter has 
been considered in [10] and further analysed for unmodulated and modulated RF carriers 
[11,12]. Although, recently high (50-70 dB) ER specifically designed MZMs incorporating 
active trimmers have been demonstrated [13,14] to achieve 47 dB carrier/sideband 
supression, it is important to show how similar or even better extinction ratios can be 
achieved using conventional (20-30 dB ER) off the shell components. 

The objective of this paper is to demonstrate, that the effect of the finite extinction ratio of 
the MZMs on OSSB and DSB-SC modulation can be greatly reduced by using a dual drive 
Mach-Zehnder modulator (DD-MZM) cascaded with a phase modulator (PM). This 
combination could potentially be fabricated as single integrated device not dissimilar to the 
device of [15]. It is also demonstrated that such strategy enables efficient OSSB based radio 
frequency tripling with the capability to simultaneously transport 4 (or more) WiMax 
channels (or wide-band OFDM channels), with an average transmit relative constellation 

error (RCE) of 30 dB. Due to the high extinction ratio achieved it is demonstrated that this 
optical frequency tripling is robust against dispersion, presenting an RCE degradation of less 
than (3 dB) over 40 km of fibre. 

The paper is organized as follows. Section 2 presents the operational principle of the 
proposed ER compensation scheme and discusses its application to DSB-SC and OSSB 
modulation. Section 3 presents and discusses the experimental setup. Section 4 provides 
experimental evidence of successful ER compensation and efficient optical frequency. 
Finally, Section 5 concludes the paper. 

2. Theory of operation 

Optical millimetre wave generation techniques are required to be wavelength agnostic [15, 
16] hence, the use of optical filters to achieve OSSB is not possible. Also, the use of low 
frequency optical components to generate high-frequency electrical carriers is desirable. 

VA1

VA2

 

Fig. 1. Schematic of the proposed ER compensation scheme. 

The optical modulator used in this work uses a combination of two commercially 
available components; a DD-MZM cascaded with an optical phase modulator (PM) as 
illustrated in Fig. 1. The electrical voltages applied on both electrodes of the DD-MZM 
consist of an RF component at frequency fRF and a dc term, given by: 
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while the voltage applied to the PM is assumed to be    cos 2B RFV t B f t   , B (PM 

amplitude) and β (PM phase) are adjustable parameters. The optical field at the input of the 

DD-MZM is   02 cj t

iE t P e


 , with optical angular frequency 
c and average power

0P . The 

optical field  MZE t  at the output of the DD-MZM can be expressed as: 

    
     1 2 2A A A

A A A

V t V t V t
j j j

V V V

MZ iE t E t e e e  

  

 
   

    
    

 (2) 

AV  is the switching voltage of the DD-MZM, η and ξ are given respectively by 
1 2r r and 

  1 2 1 21 1r r r r   , where 
1r and 

2r  are the power splitting ratios of the input and output 

of the Y-junctions of the MZ [7] respectively. The output of the DD-MZM is therefore 
modelled as a combination of a balanced DD-MZM with an extra phase modulation. After the 
phase modulator 
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BV   being the switching voltage of the phase modulator. Considering 
1 / Am A V  and 

2 / Bm B V   the RF modulation indices of the DD-MZM and PM respectively, and 
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1,2 1 2 1 2 sin .M m m m m      

where Jn(.) is the Bessel function of the first kind of order n. The optical field at the output of 
the PM can then be regarded as a sum of an ideal balanced modulator, with infinite extinction 
ratio, corresponding to the X term, and extra phase modulation, term Y, The extra term, 

    2 1n nJ M J M   , that appears if 0  , combined with appropriate setting of m1 and 

m2 can interact destructively with the term, ξ, arising from the MZ imbalance leading to an 
ER that theoretically can be infinite. 

Equation (4) besides explaining and quantifying how the proposed compensation scheme 
operates also provides a powerful analysis tool that does not require the use of sophisticated 
simulation software to find out the most appropriated regions of operation. By varying the 
bias, phase and modulation indices ratios, this configuration provides several interesting 
features, such as improved side band extinction, as is explored in this paper. Besides OSSB, 
other modulation modes can be obtained, like the conventional optical DSB-SC at 

1 2    . The flexibility of this configuration allows for fine tuning of the setup for 

optimized performance and selection of the optical harmonic to be suppressed. The 
modulation data in turn is present on these components as sidebands. At the receiver, this 
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optical signal is square-law detected, and produces frequency components as a result of the 
beating of the optical signal with its harmonic conjugate. This up-conversion process by 
optical frequency translation also undergoes phase modulation, which remains unaltered 
through the nonlinearity of the optical transceiver. Due to this preservation of phase 
information of the translated RF, the signal can be wirelessly transmitted through the radio 
link. 

2.1 DSB-SC compensation analysis 

For DSB-SC generation the DD-MZM should be biased with 1 2
2


    . The output of the 

DD-MZM is obtained by setting in Eq. (4) m2 = 0 and β = 0, under these circumstances 

1 2
2


      and

1 2 1M M m  . The performance of the proposed compensation strategy 

is assessed, using Eq. (4), in terms of the optical carrier suppression ratio (OCSR), defined as 
the power of the first sideband divided by the power of the optical carrier. 
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Fig. 2. Dependence of the optical carrier suppression ratio (OCSR) on the modulation index of 
the phase modulator, m2 and the phase shift β. (a) OCSR contour plot versus m2 and β for a 
DD-MZM with ER = 30 dB. (b) Optical power of the optical carrier, first harmonic and second 
harmonic after ER compensation for the DD-MZM with ER = 30 dB. (c) same as (a) for a DD-
MZM with ER = 20 dB. (d) Same as (b) for a DD-MZM with ER = 20 dB. 
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(a) (b)
 

Fig. 3. Optical spectra, obtained by simulation using the VPI Transmission MakerTM, for m1 = 
0.2, m2 = 0.08 and β = 21°. (a) At the output of the DD-MZM. (b) At the output of the PM. 

Figure 2(a) and Fig. 2(c) depicts the dependence of the OCSR on the modulation index of 
the PM, m2, and the phase shift β, in a contour plot. m2 is swept in steps of 0.01 while β in 
steps of 1°. Figure 2(a) considers a DD-MZM with an ER = 30 dB while Fig. 2(c) considers a 
DD-MZM with ER = 20 dB, the modulation index of the DD-MZM, m1, is set to 0.2. For both 
situations there are operational regions of improved OCSR, as well as several local maxima 
values (red colour). Figure 2(b) and Fig. 2(d) show the normalized power of the optical 
carrier, the first and second optical harmonics at the output of the PM, for β = 21° and β = 
232° respectively. These two phase shifts correspond to points of maximum OCSR in the 
simulation, which in both cases is higher than 80 dB. A word of caution, as can be seen from 
Fig. 2(a) and Fig. 2(c) the OCSR is very sensitive to β and m2, therefore a practical 
implementation of this proposal should employ feedback techniques in order to compensate 
for operational condition drifts. 

Computer simulations were carried out in order to validate our analytical analysis. Figure 
3 shows results obtained by simulation using the commercial VPI Transmission Maker 
software. Figure 3(a) shows the optical spectrum at the output of a DD-MZM with an 
extinction ratio ER = 30 and m1 = 0.2. A CW laser with 1 MHz linewidth and 0 dBm average 
output power was used in the simulation. After phase compensation, setting m2 = 0.08 and β = 
21°, as expected from the previous analysis, the optical carrier is highly suppressed, its value 
being under the system noise level, as shown in Fig. 3(b). 

2.2 OSSB compensation analysis 

Optical single sideband modulation is obtained when 0  , 1 2m m  and 1,2 / 4,   as 

demonstrated in [17]. In this section, the optical first sideband suppression ratio (OFSSR), 
defined as the power of the first right sideband divided by the power of the first left sideband 
is used to evaluate the performance of the proposed compensation technique. For an ideal 

OSSB signal, OFSSR   . The effect of the finite extinction ratio (ER) of the DD-MZM in 

the optical single side band signal is to generate a spurious right (left) first optical sideband 
that, if transmission through a dispersive fibre is considered, will interact with the main 
optical sideband leading to periodic power fading. 

OFSSR contour plots are depicted in Fig. 4(a) and Fig. 4(c), versus modulation index of 
the PM, m2, and the phase shift β. m2 is swept in steps of 0.01 while β in steps of 1°. Figure 
4(a) considers a DD-MZM with an ER = 30 dB while Fig. 4(c) considers a DD-MZM with 
ER = 20 dB, the modulation index of the DD-MZM, m1, is set to 0.2. Contrary to the 
compensation of DSB-SC the contour plots show that the optima regions are well defined, 
and that the optima are reached smoothly. Figure 4(b) and Fig. 4(d) show the normalized 
power of the optical carrier, the first and second, left and right, optical harmonics at the 

output of the PM, for ER = 30 5º   and ER = 20, 14º  , respectively. In both situations 

the maximum OFSSR is obtained for m2 = m1 = 0.2. The compensation of the ER is 
accomplished only through an increase in  . The OSSB configuration is more robust than the 

OCS configuration and the ER maximum is reached smoothly. 
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Fig. 4. Dependence of the OFSSR on the modulation index of the phase modulator, m2 and the 
phase shift β. (a) OFSSR contour plot versus m2 and β for a DD-MZM with ER = 30 dB. (b) 
Optical power of the optical carrier, first harmonics and second harmonics after ER 
compensation for the DD-MZM with ER = 30 dB. (c) same as (a) for a DD-MZM with ER = 
20 dB. (d) Same as (b) for a DD-MZM with ER = 20 dB. 

(a) (b)  

Fig. 5. OSSB optical spectra, obtained by simulation using the VPI Transmission MakerTM, for 
m1 = 0.2, m2 = 0.2 and β = 14.24°. (a) At the output of the DD-MZM. (b) At the output of the 
PM. 

Figure 5 shows the results obtained by simulation using the commercial software VPI 
Transmission Maker. The optical source used in the simulation was a 1 MHz linewidth CW 
laser with 0 dBm average output power. The optical spectrum at the output of a DD-MZM 
with an extinction ratio ER = 20 and m1 = 0.2 is illustrated in Fig. 5(a). After phase 
compensation, setting m2 = 0.2 and β = 14.24°, the left optical carrier is highly suppressed, its 
value being under the system noise level, as depicted in Fig. 5(b). 

3. Experimental setup 

In order to demonstrate the operating concept, the test bed shown in Fig. 6 was implemented. 
An Aeroflex Vector Signal Generator (VSG) was used as WiMax (802.16-2005 specification) 
transmitter and receiver. Throughput analysis carried out [18] for layer 2 shows that the 
maximum data rate achievable for the WiMax parameters used in this experiment is 28 Mbps. 
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This particular profile was selected as it is valid for both fixed and mobile terminals. In the 
frequency duplex WiMax signal used, a single burst constituted the downstream data region. 
Four of these channels with the specifications given in Fig. 6, at 440, 460, 480 & 500 MHz 
with 20 MHz channel spacing and 10 MHz channel width were generated. The choice of 10 
MHz bandwidth was influenced by the modulation bandwidth of 90 MHz available on the 
VSG to accommodate 4 channels. 

 

Fig. 6. Cascaded DD-MZM and PM (tuneable to DSB-SC and OSSB configuration) 

The channel spacing of 20MHz was selected to minimise adjacent channel leakage ratio 
(ACLR) at source. The data rate at source was recorded to be 25.2 Mbps per WiMax channel. 
The small reduction in the achievable data rate can be attributed to the non-linearity induced 
penalties in this non-standard WiMax SCM configuration. The back-to-back, baseline 

downstream WiMax channel transmitter RCE was recorded to be 36.7 dB. The setup is 
scalable to wideband signals and higher data rates by using multiple WiMax sources. 

To generate useable 3rd order non-linear components, a high RF carrier power level is 
required at the DD-MZM and the PM inputs. A 19.5 dBm strong 10 GHz RF carrier was split 
using a 3 dB splitter with one half fed to a variable electrical attenuator and a variable phase 
shifter to drive the PM and the other half was mixed with the WiMax signal. The combined 
electrical power level of the WiMax channels at the input of the mixer was Figure 
7 and Fig. 8 show the WiMax signal leakage for transmission measurements. This power 
level was selected to optimise RCE based on the dynamic range and required modulation 
index of the system. The up-converted WiMax signal was amplified by a 30 dB gain amplifier 
and applied via a 180° hybrid connected to the arms of DD-MZM, biased at Vπ = 2.65 V. 
DSB-SC and OSSB with high extinction ratio, as shown in Fig. 6(iv) & Fig. 6(viii) 
respectively, were generated by regulating the amplitude and phase of the RF carrier driving 
the PM. 
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Fig. 7. OSSB with modulation data signal leakage 
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Fig. 8. DSB-SC with modulation data signal leakage 

An EDFA was used to maintain 5 dBm input to a U
2
T PIN diode with 70 GHz 

bandwidth and slope efficiency of 0.6 A/W. After band-pass amplification of the photo-
detected signal using a Miteq JS4-26004000-25-5P LNA, down-conversion was achieved 
using a double-balanced mixer. An Aeroflex Vector Signal Analyser was used for 
demodulation and analysis of the WiMax channels. The SNR of the 4-channel WiMAX signal 
up-converted to 10GHz was in excess of 45dB (Fig. 6(ix)). 

4. System results and discussion 

For the OSSB setup, measurements evaluated the dispersion induced signal fading for 
different fibre lengths, shown in Fig. 9. The tripled carrier at 30 GHz was dispersion tolerant. 
DSB-SC and OSSB configurations with no WiMax data, reached optical carrier and sideband 
suppressions >45dB (Fig. 6(iii) & Fig. 6(vii)); a 25dB improvement compared to a typical 
DD-MZM based OSSB configurations [6–9]. This translates to a lower spurious RF spectrum 
and higher SNR. Also, the phase imbalance due to asymmetry in the two arms of DD-MZM 
(when VDC1 = VDC2) can be compensated and used advantageously to fine-tune the resultant 
phase to either suppress a side-band or the carrier to dynamically switch between OSSB and 
DSB-SC respectively. The measured optical channel penalty on the SNR of the WiMax signal 
was 25 dB (power budget in Fig. 6). Optical modulation index for the DD-MZM was 

maintained between 0.3 and 0.4 to meet the 28 dB RCE requirement to transmit 64 QAM-
2/3. Hence the required 18 dB SNR (RCErequired = -(SNRrequired + 10)) was surpassed by 
10 dB as the 
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Fig. 9. RF power variation with fibre length for OSSB configuration 

-33

-30

-27

-24

-21

-18

0 5 10 15 20 25 30 35 40

R
C

E 
at

 r
e

ce
iv

e
r[

d
B

]

Fibre Length [km]

10 GHz 20 GHz 30 GHz

 

Fig. 10. RCE variation of down-converted WiMax signal. 

measured electrical third harmonic (30 GHz) SNR for the system was 27.4 dB. The RCE for 
10 GHz, 20 GHz and 30 GHz were measured for varying fibre lengths and is shown in Fig. 
10. For fibre lengths up to 25 km, the demodulated WiMax signal on 30 GHz carrier achieves 

the 28 dB RCE required for 64 QAM-2/3. 
The second harmonic 20 GHz performance is affected by dispersion fading. Sextupling 

can also be achieved, as previously demonstrated [13] with 25.8 dB OSNR, in the DSB-SC 
configuration enabling optical up-conversion to 60GHz. Figure 8 shows only a single pair 
contribution (dispersion tolerance) to 60GHz RF signal. The measured 15.75 dB relative 
OSNR for 60 GHz can be improved by using stronger RF carriers. 40GHz is achievable with 
this setup with relative OSNR >35dB and carrier suppression >50 dB, comparable to 
simulations with 20 GHz carrier and PM. 

The phase noise measurement of the upconverted RF signal can be seen in Fig. 11. Table 
1 shows the noise values of the RF source and the upconverted signal at various offsets. The 
measurements show that there is a 9 dB difference in the phase noise and RF source noise, 
which is in agreement with the theoretical analysis done [19] to show that phase noise 
increases as h

2
 (h being the harmonic multiple, which is 3 in this instance). Walk-off can be 

observed beyond 100 kHz and can be attributed to relative intensity noise (RIN) of the laser 
and EDFA noise factor. Also, due to the absence of optical filters and hence higher amplified 
spontaneous emission (ASE) noise, the power of the modulated OFDM signal and its spectral 
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separation from optical carrier affect the system performance [20, 21]. As a consequence 
signal-spontaneous beat noise becomes a dominant factor independent of the EDFA gain [22]. 
Hence, the upconverted signals SNR can be improved by increasing the OFDM signal power 
vs optical carrier power, the spectral gap between optical carrier and OFDM bands and the 
gain of EDFA without inducing further penalty in terms of phase noise. 

TABLE 1 
Source and Upconverted RF Phase Noise 

Offset [kHz] 10 GHz [dBc/Hz] 30 GHz [dBc/Hz] 

1 86.62 77.17 
10 89.94 81.25 

100 111.35 91.64 
1000 126.07 89.24 

Residual PM 0.579° 3.198° 
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Fig. 11. Measured phase noise of source and upconverted signal. 

As for the WiMax signals transmitted, the low phase noise introduced due to tripling of 
carrier frequency was successfully compensated by the receiver using the pilot tones inherent 
to OFDM signals [23] and the demodulated WiMax channels constellation can be seen in Fig. 
12. Although, an increase in the required modulated signal power and optimum spectral 
separation from optical carrier has an impact on spectral efficiency, it is easily justified by the 
colourless nature of the proposed system. 
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(a) (b) (c)

(d) (e)  

Fig. 12. Demodulated 64 QAM WiMax signal constellation diagrams obtained after phase and 
amplitude corrections at the receiver. (a) Electrical back-back. (b) RF = 30 GHz & IF = 440 
MHz. (c) RF = 30 GHz & IF = 460 MHz. (d) RF = 30 GHz & IF = 480 MHz. (e) RF = 30 GHz 
& IF = 500 MHz. 

5. Conclusion 

In this paper we have reported frequency tripling by employing cascaded MZM & PM 
configuration to achieve >45 dB sideband suppression.. We have demonstrated theoretically 
and experimentally that by varying phase and modulation indices ratios of the cascaded 
configuration, improved side band extinction can be achieved. Moreover, the system has the 
versatility to select DSB-SC or OSSB operation by varying bias, phase and modulation 
indices. The concept of multiband system and self-heterodyne reception can be implemented 
with higher accuracy and lower power. A simple feedback control, monitoring the power 
level of suppressed optical band can enable automatic optimisation of the bias, phase and 
attenuation in order to maintain high OSNR and hence the SNR of the overall radio-over-fibre 
link. 
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