445 research outputs found

    An experimental and numerical study of high-frequency Raman scattering in argon gas

    Get PDF
    International audienc

    ETA receptor-mediated Ca2+ signaling in thin descending limbs of Henle's loop: Impairment in genetic hypertension

    Get PDF
    ETA-mediated Ca2+ signaling in thin descending limbs of Henle's loop: Impairment in genetic hypertension.BackgroundEndothelins (ET) have diuretic and natriuretic actions via ETB receptors that are found in most renal tubular segments, although the thin limbs have not been studied. Data also suggest that dysfunction of the renal ET system may be important in the pathogenesis of hypertension. The present study was aimed at determining the presence and nature of ET receptors in the thin limbs of Henle's loop and their ability to activate a Ca2+-dependent signaling pathway, as well as whether ET-induced Ca2+ signals are altered in hypertension.MethodsReverse transcription-polymerase chain reaction (RT-PCR) and Fura 2 fluorescence measurements of [Ca2+]i were made to characterize ET receptors in descending thin limbs (DTL) of Sprague-Dawley rats, spontaneously hypertensive (SH) rats, and control Wistar-Kyoto (WKY) rats, and the three selected strains of Lyon rats with low-normal (LL), normal (LN), and high (LH) blood pressure.ResultsIn SD rats, ET induced Ca2+ signals in DTL of long-looped nephrons, but not in DTL of short loops, or in ascending thin limbs. Ca2+ increases were abolished by BQ123, an antagonist of the ETA receptor, but not by BQ788, an antagonist of the ETB subtype. Endothelin-3 and sarafotoxin 6c, two ETB receptor agonists, were both inactive. RT-PCR showed the presence of both ETA and ETB receptor mRNA. Ca2+ signals measured in DTL of WKY LL and LN rats were similar to those in Sprague-Dawley rats, but were significantly diminished (LH) or abolished (SH) in hypertensive rats.ConclusionA functional ETA receptor activating a Ca2+-dependent pathway is expressed in DTL. This ETA-induced calcium signaling is impaired in two strains of genetically hypertensive rats

    Enhanced diffusion in finite-size simulations of a fragile diatomic glass former

    Get PDF
    Using molecular dynamics simulations we investigate the finite-size dependence of the dynamical properties of a diatomic supercooled liquid. The simplicity of the molecule permits us to access the microsecond time scale. We find that the relaxation time decreases simultaneously with the strength of cooperative motions when the size of the system decreases. While the decrease of the cooperative motions is in agreement with previous studies, the decrease of the relaxation time opposes what has been reported to date in monatomic glass formers and in silica. This result suggests the presence of different competing physical mechanisms in the relaxation process. For very small box sizes the relaxation times behavior reverses itself and increases strongly when the box size decreases, thus leading to a nonmonotonic behavior. This result is in qualitative agreement with defect and facilitation theories.

    Moving from a Product-Based Economy to a Service-Based Economy for a More Sustainable Future

    Get PDF
    Traditionally, economic growth and prosperity have been linked with the availability, production and distribution of tangible goods as well as the ability of consumers to acquire such goods. Early evidence regarding this connection dates back to Adam Smith's Wealth of Nations (1776), in which any activity not resulting in the production of a tangible good is characterized as unproductive of any value." Since then, this coupling of economic value and material production has been prevalent in both developed and developing economies throughout the world. One unintended consequence of this coupling has been the exponential increase in the amount of solid waste being generated. The reason is that any production and consumption of material goods eventually generates the equivalent amount of (or even more) waste. Exacerbating this problem is the fact that, with today's manufacturing and supply chain management technologies, it has become cheaper to dispose and replace most products rather than to repair and reuse them. This has given rise to what some call a disposable society." To put things in perspective: In 2012 households in the U.K. generated approximately 22 thousand tons of waste, which amounted to 411 kg of waste generated per person (Department for Environment, Food & Rural Affairs, 2015). During the same time period, households in the U.S. generated 251 million tons of waste, which is equivalent to a person generating approximately 2 kg of waste every day (U.S. Environmental Protection Agency, 2012). Out of these 251 million tons of total waste generated, approximately 20% of the discarded items were categorized as durable goods. The disposal of durable goods is particularly worrisome because they are typically produced using material from non- renewable resources such as iron, minerals, and petroleum-based raw materials

    A novel knockout mouse for the small EDRK-rich factor 2 (Serf2) showing developmental and other deficits

    Get PDF
    The small EDRK-rich factor 2 (SERF2) is a highly conserved protein that modifies amyloid fibre assembly in vitro and promotes protein misfolding. However, the role of SERF2 in regulating age-related proteotoxicity remains largely unexplored due to a lack of in vivo models. Here, we report the generation of Serf2 knockout mice using an ES cell targeting approach, with Serf2 knockout alleles being bred onto different defined genetic backgrounds. We highlight phenotyping data from heterozygous Serf2^{+/-} mice, including unexpected male-specific phenotypes in startle response and pre-pulse inhibition. We report embryonic lethality in Serf2^{-/-} null animals when bred onto a C57BL/6 N background. However, homozygous null animals were viable on a mixed genetic background and, remarkably, developed without obvious abnormalities. The Serf2 knockout mice provide a powerful tool to further investigate the role of SERF2 protein in previously unexplored pathophysiological pathways in the context of a whole organism

    Systematic assessment of fluid responsiveness during early septic shock resuscitation: secondary analysis of the ANDROMEDA-SHOCK trial

    Get PDF
    BACKGROUND: Fluid boluses are administered to septic shock patients with the purpose of increasing cardiac output as a means to restore tissue perfusion. Unfortunately, fluid therapy has a narrow therapeutic index, and therefore, several approaches to increase safety have been proposed. Fluid responsiveness (FR) assessment might predict which patients will effectively increase cardiac output after a fluid bolus (FR+), thus preventing potentially harmful fluid administration in non-fluid responsive (FR-) patients. However, there are scarce data on the impact of assessing FR on major outcomes. The recent ANDROMEDA-SHOCK trial included systematic per-protocol assessment of FR. We performed a post hoc analysis of the study dataset with the aim of exploring the relationship between FR status at baseline, attainment of specific targets, and clinically relevant outcomes. METHODS: ANDROMEDA-SHOCK compared the effect of peripheral perfusion- vs. lactate-targeted resuscitation on 28-day mortality. FR was assessed before each fluid bolus and periodically thereafter. FR+ and FR- subgroups, independent of the original randomization, were compared for fluid administration, achievement of resuscitation targets, vasoactive agents use, and major outcomes such as organ dysfunction and support, length of stay, and 28-day mortality. RESULTS: FR could be determined in 348 patients at baseline. Two hundred and forty-two patients (70%) were categorized as fluid responders

    Importing genetically altered animals : ensuring quality

    Get PDF
    The reproducibility of research using laboratory animals requires reliable management of their quality, in particular of their genetics, health and environment, all of which contribute to their phenotypes. The point at which these biological materials are transferred between researchers is particularly sensitive, as it may result in a loss of integrity of the animals and/or their documentation. Here, we describe the various aspects of laboratory animal quality that should be confirmed when sharing rodent research models. We also discuss how repositories of biological materials support the scientific community to ensure the continuity of the quality of laboratory animals. Both the concept of quality and the role of repositories themselves extend to all exchanges of biological materials and all networks that support the sharing of these reagents.Peer reviewe

    Stimuli Thresholds for Isomerization-Induced Molecular Motions in Azobenzene-Containing Materials.

    Get PDF
    We use large-scale molecular dynamics simulations of the isomerizations of azobenzene molecules diluted inside a simple molecular material to investigate the effect of a modification of the cis isomer shape on the induced diffusion mechanism. To this end we simulate incomplete isomerizations, modifying the amplitude of the trans-to-cis isomerization. We find thresholds in the evolution of the host molecules mobility with the isomerization amplitude, a result predicted by the cage-breaking mechanism hypothesis (Teboul, V.; Saiddine, M.; Nunzi, J. M.; Accary, J. B. J. Chem. Phys. 2011, 134, 114517) and by the gradient pressure mechanism theory (Barrett, C. J.; Rochon, P. L.; Natansohn, A. L. J. Chem. Phys. 1998, 109, 1505–1516.). Above the threshold the diffusion then increases linearly with the variation of the chromophore size induced by the isomerization

    Conformational and Structural Relaxations of Poly(ethylene oxide) and Poly(propylene oxide) Melts: Molecular Dynamics Study of Spatial Heterogeneity, Cooperativity, and Correlated Forward-Backward Motion

    Full text link
    Performing molecular dynamics simulations for all-atom models, we characterize the conformational and structural relaxations of poly(ethylene oxide) and poly(propylene oxide) melts. The temperature dependence of these relaxation processes deviates from an Arrhenius law for both polymers. We demonstrate that mode-coupling theory captures some aspects of the glassy slowdown, but it does not enable a complete explanation of the dynamical behavior. When the temperature is decreased, spatially heterogeneous and cooperative translational dynamics are found to become more important for the structural relaxation. Moreover, the transitions between the conformational states cease to obey Poisson statistics. In particular, we show that, at sufficiently low temperatures, correlated forward-backward motion is an important aspect of the conformational relaxation, leading to strongly nonexponential distributions for the waiting times of the dihedrals in the various conformational statesComment: 13 pages, 13 figure
    • …
    corecore