8,251 research outputs found

    Neutron transition strengths of 21+2^+_1 states in the neutron rich Oxygen isotopes determined from inelastic proton scattering

    Full text link
    A coupled-channel analysis of the 18,20,22^{18,20,22}O(p,p)(p,p') data has been performed to determine the neutron transition strengths of 21+^+_1 states in Oxygen targets, using the microscopic optical potential and inelastic form factor calculated in the folding model. A complex density- and \emph{isospin} dependent version of the CDM3Y6 interaction was constructed, based on the Brueckner-Hatree-Fock calculation of nuclear matter, for the folding model input. Given an accurate isovector density dependence of the CDM3Y6 interaction, the isoscalar (δ0\delta_0) and isovector (δ1\delta_1) deformation lengths of 21+^+_1 states in 18,20,22^{18,20,22}O have been extracted from the folding model analysis of the (p,p)(p,p') data. A specific NN-dependence of δ0\delta_0 and δ1\delta_1 has been established which can be linked to the neutron shell closure occurring at NN approaching 16. The strongest isovector deformation was found for 21+^+_1 state in 20^{20}O, with δ1\delta_1 about 2.5 times larger than δ0\delta_0, which indicates a strong core polarization by the valence neutrons in 20^{20}O. The ratios of the neutron/proton transition matrix elements (Mn/MpM_n/M_p) determined for 21+^+_1 states in 18,20^{18,20}O have been compared to those deduced from the mirror symmetry, using the measured B(E2)B(E2) values of 21+^+_1 states in the proton rich 18^{18}Ne and 20^{20}Mg nuclei, to discuss the isospin impurity in the 21+2^+_1 excitation of the A=18,T=1A=18,T=1 and A=20,T=2A=20,T=2 isobars.Comment: Version accepted for publication in Physical Review

    Microwave Remote Sensing of Ocean Surface Wind Speed and Rain Rates over Tropical Storms

    Get PDF
    The value of using narrowly spaced frequencies within a microwave band to measure wind speeds and rain rates over tropical storms with radiometers is reviewed. The technique focuses on results obtained in the overflights of Hurricane Allen during 5 and 8 of August, 1980

    Anisotropic magnetoresistance of spin-orbit coupled carriers scattered from polarized magnetic impurities

    Get PDF
    Anisotropic magnetoresistance (AMR) is a relativistic magnetotransport phenomenon arising from combined effects of spin-orbit coupling and broken symmetry of a ferromagnetically ordered state of the system. In this work we focus on one realization of the AMR in which spin-orbit coupling enters via specific spin-textures on the carrier Fermi surfaces and ferromagnetism via elastic scattering of carriers from polarized magnetic impurities. We report detailed heuristic examination, using model spin-orbit coupled systems, of the emergence of positive AMR (maximum resistivity for magnetization along current), negative AMR (minimum resistivity for magnetization along current), and of the crystalline AMR (resistivity depends on the absolute orientation of the magnetization and current vectors with respect to the crystal axes) components. We emphasize potential qualitative differences between pure magnetic and combined electro-magnetic impurity potentials, between short-range and long-range impurities, and between spin-1/2 and higher spin-state carriers. Conclusions based on our heuristic analysis are supported by exact solutions to the integral form of the Boltzmann transport equation in archetypical two-dimensional electron systems with Rashba and Dresselhaus spin-orbit interactions and in the three-dimensional spherical Kohn-Littinger model. We include comments on the relation of our microscopic calculations to standard phenomenology of the full angular dependence of the AMR, and on the relevance of our study to realistic, two-dimensional conduction-band carrier systems and to anisotropic transport in the valence band of diluted magnetic semiconductors.Comment: 15 pages, Kohn-Littinger model adde

    Processing and Transmission of Information

    Get PDF
    Contains reports on five research projects.National Aeronautics and Space Administration (Grant NGL 22-009-013)Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-030

    Antisymmetric magnetoresistance in magnetic multilayers with perpendicular anisotropy

    Get PDF
    While magnetoresistance (MR) has generally been found to be symmetric in applied field in non-magnetic or magnetic metals, we have observed antisymmetric MR in Co/Pt multilayers. Simultaneous domain imaging and transport measurements show that the antisymmetric MR is due to the appearance of domain walls that run perpendicular to both the magnetization and the current, a geometry existing only in materials with perpendicular magnetic anisotropy. As a result, the extraordinary Hall effect (EHE) gives rise to circulating currents in the vicinity of the domain walls that contributes to the MR. The antisymmetric MR and EHE have been quantitatively accounted for by a theoretical model.Comment: 17 pages, 4 figure

    Feynman Rules in the Type III Natural Flavour-Conserving Two-Higgs Doublet Model

    Full text link
    We consider a two Higgs-doublet model with S3S_3 symmetry, which implies a π2\pi \over 2 rather than 0 relative phase between the vacuum expectation values and and . The corresponding Feynman rules are derived accordingly and the transformation of the Higgs fields from the weak to the mass eigenstates includes not only an angle rotation but also a phase transformation. In this model, both doublets couple to the same type of fermions and the flavour-changing neutral currents are naturally suppressed. We also demonstrate that the Type III natural flavour-conserving model is valid at tree-level even when an explicit S3S_3 symmetry breaking perturbation is introduced to get a reasonable CKM matrix. In the special case β=α\beta = \alpha, as the ratio tanβ=v2v1\tan\beta = {v_2 \over v_1} runs from 0 to \infty, the dominant Yukawa coupling will change from the first two generations to the third generation. In the Feynman rules, we also find that the charged Higgs currents are explicitly left-right asymmetric. The ratios between the left- and right-handed currents for the quarks in the same generations are estimated.Comment: 16 pages (figures not included), NCKU-HEP/93-1

    Massive Star Cluster Formation and Destruction in Luminous Infrared Galaxies in GOALS

    Get PDF
    We present the results of a {\it Hubble Space Telescope} ACS/HRC FUV, ACS/WFC optical study into the cluster populations of a sample of 22 Luminous Infrared Galaxies in the Great Observatories All-Sky LIRG Survey. Through integrated broadband photometry we have derived ages and masses for a total of 484 star clusters contained within these systems. This allows us to examine the properties of star clusters found in the extreme environments of LIRGs relative to lower luminosity star-forming galaxies in the local Universe. We find that by adopting a Bruzual \& Charlot simple stellar population (SSP) model and Salpeter initial mass function, the age distribution of clusters declines as dN/dτ=τ0.9+/0.3dN/d\tau = \tau^{-0.9 +/- 0.3}, consistent with the age distribution derived for the Antennae Galaxies, and interpreted as evidence for rapid cluster disruption occuring in the strong tidal fields of merging galaxies. The large number of 106M10^{6} M_{\odot} young clusters identified in the sample also suggests that LIRGs are capable of producing more high-mass clusters than what is observed to date in any lower luminosity star-forming galaxy in the local Universe. The observed cluster mass distribution of dN/dM=M1.95+/0.11dN/dM = M^{-1.95 +/- 0.11} is consistent with the canonical -2 power law used to describe the underlying initial cluster mass function (ICMF) for a wide range of galactic environments. We interpret this as evidence against mass-dependent cluster disruption, which would flatten the observed CMF relative to the underlying ICMF distribution.Comment: 63 pages, 58 Figures, 56 Tables, Accepted for publication in Ap
    corecore