38 research outputs found

    Emergence of bound states in ballistic magnetotransport of graphene antidots

    Get PDF
    An experimental method for detection of bound states around an antidot formed from a hole in a graphene sheet is proposed by measuring the ballistic two terminal conductances. In particularly, we consider the effect of bound states formed by magnetic field on the two terminal conductance and show that one can observe Breit-Wigner like resonances in the conductance as a function of the Fermi level close to the energies of the bound states. In addition, we develop a new numerical method in which the computational effort is proportional to the linear dimensions, instead of the area of the scattering region beeing typical for the existing numerical recursive Green's function method.Comment: 7 pages, 6 figure

    Demonstration of a Melanoma-Specific CD44 Alternative Splicing Pattern That Remains Qualitatively Stable, but Shows Quantitative Changes during Tumour Progression

    Get PDF
    The role of CD44 in the progression of human melanoma has mostly been characterised by qualitative changes in expression of its individual variable exons. These exons however, may be expressed to form a number of molecules, the alternative splice variants of CD44, which may be structurally and functionally different. Using real-time PCR measurements with variable exon specific primers we have determined that all are expressed in human melanoma. To permit comparison between different tumours we identified a stable CD44 variable exon (CD44v) expression pattern, or CD44 ‘fingerprint’. This was found to remain unchanged in melanoma cell lines cultured in different matrix environments. To evaluate evolution of this fingerprint during tumour progression we established a scid mouse model, in which the pure expression pattern of metastatic primary tumours, circulating cells and metastases, non-metastatic primary tumours and lung colonies could be studied. Our analyses demonstrated, that although the melanoma CD44 fingerprint is qualitatively stable, quantitative changes are observed suggesting a possible role in tumour progression

    Thermopower in hBN/graphene/hBN superlattices

    Full text link
    Thermoelectric effects are highly sensitive to the asymmetry in the density of states around the Fermi energy and can be exploited as probes of the electronic structure. We experimentally study thermopower in high-quality monolayer graphene, within heterostructures consisting of complete hBN encapsulation and 1D edge contacts, where the graphene and hBN lattices are aligned. When graphene is aligned to one of the hBN layers, we demonstrate the presence of additional sign reversals in the thermopower as a function of carrier density, directly evidencing the presence of the moir\'e superlattice. We show that the temperature dependence of the thermopower enables the assessment of the role of built-in strain variation and van Hove singularities and hints at the presence of Umklapp electron-electron scattering processes. As the thermopower peaks around the neutrality point, this allows to probe the energy spectrum degeneracy. Further, when graphene is double-aligned with the top and bottom hBN crystals, the thermopower exhibits features evidencing multiple cloned Dirac points caused by the differential super-moir\'e lattice. For both cases we evaluate how well the thermopower agrees with Mott's equation. Finally, we show the same superlattice device can exhibit a temperature-driven thermopower reversal from positive to negative and vice versa, by controlling the carrier density. The study of thermopower provides an alternative approach to study the electronic structure of 2D superlattices, whilst offering opportunities to engineer the thermoelectric response on these heterostructures.Comment: 9 pages, 3 figure

    A Chemocentric Approach to the Identification of Cancer Targets

    Get PDF
    A novel chemocentric approach to identifying cancer-relevant targets is introduced. Starting with a large chemical collection, the strategy uses the list of small molecule hits arising from a differential cytotoxicity screening on tumor HCT116 and normal MRC-5 cell lines to identify proteins associated with cancer emerging from a differential virtual target profiling of the most selective compounds detected in both cell lines. It is shown that this smart combination of differential in vitro and in silico screenings (DIVISS) is capable of detecting a list of proteins that are already well accepted cancer drug targets, while complementing it with additional proteins that, targeted selectively or in combination with others, could lead to synergistic benefits for cancer therapeutics. The complete list of 115 proteins identified as being hit uniquely by compounds showing selective antiproliferative effects for tumor cell lines is provided

    Pan-RAF and MEK vertical inhibition enhances therapeutic response in non-V600 BRAF mutant cells

    Get PDF
    BACKGROUND: Currently, there are no available targeted therapy options for non-V600 BRAF mutated tumors. The aim of this study was to investigate the effects of RAF and MEK concurrent inhibition on tumor growth, migration, signaling and apoptosis induction in preclinical models of non-V600 BRAF mutant tumor cell lines. METHODS: Six BRAF mutated human tumor cell lines CRL5885 (G466 V), WM3629 (D594G), WM3670 (G469E), MDAMB231 (G464 V), CRL5922 (L597 V) and A375 (V600E as control) were investigated. Pan-RAF inhibitor (sorafenib or AZ628) and MEK inhibitor (selumetinib) or their combination were used in in vitro viability, video microscopy, immunoblot, cell cycle and TUNEL assays. The in vivo effects of the drugs were assessed in an orthotopic NSG mouse breast cancer model. RESULTS: All cell lines showed a significant growth inhibition with synergism in the sorafenib/AZ628 and selumetinib combination. Combination treatment resulted in higher Erk1/2 inhibition and in increased induction of apoptosis when compared to single agent treatments. However, single selumetinib treatment could cause adverse therapeutic effects, like increased cell migration in certain cells, selumetinib and sorafenib combination treatment lowered migratory capacity in all the cell lines. Importantly, combination resulted in significantly increased tumor growth inhibition in orthotropic xenografts of MDAMB231 cells when compared to sorafenib - but not to selumetinib - treatment. CONCLUSIONS: Our data suggests that combined blocking of RAF and MEK may achieve increased therapeutic response in non-V600 BRAF mutant tumors

    Prenylation Inhibition-Induced Cell Death in Melanoma: Reduced Sensitivity in BRAF Mutant/PTEN Wild-Type Melanoma Cells.

    Get PDF
    While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells
    corecore