460 research outputs found
Franck-Condon Factors and Radiative Lifetime of the A^{2}\Pi_{1/2} - X^{2}\Sigma^{+} Transition of Ytterbium Monoflouride, YbF
The fluorescence spectrum resulting from laser excitation of the
A^{2}\Pi_{1/2} - X^{2}\Sigma^{+} (0,0) band of ytterbium monofluoride, YbF, has
been recorded and analyzed to determine the Franck-Condon factors. The measured
values are compared with those predicted from Rydberg-Klein-Rees (RKR)
potential energy curves. From the fluorescence decay curve the radiative
lifetime of the A^{2}\Pi_{1/2} state is measured to be 28\pm2 ns, and the
corresponding transition dipole moment is 4.39\pm0.16 D. The implications for
laser cooling YbF are discussed.Comment: 5 pages, 5 figure
Method and apparatus for removing unwanted reflections from an interferometer
A device for eliminating unwanted reflections from refractive optical elements in an optical system is provided. The device operates to prevent desired multiple fringe patterns from being obscured by reflections from refractive elements positioned in proximity to a focal plane of the system. The problem occurs when an optical beam is projected into, and reflected back out of, the optical system. Surfaces of the refractive elements reflect portions of the beam which interfere with portions of the beam which are transmitted through the refractive elements. Interference between the reflected and transmitted portions of the beam produce multiple fringe sets which tend to obscure desired interference fringes. With the refractive optical element in close proximity to the focal plane of the system, the undesired reflected light reflects at an angle 180 degrees opposite from the desired transmitted beam. The device exploits the 180-degree offset, or rotational shear, of the undesired reflected light by providing an optical stop for blocking one-half of the cross-section of the test beam. By blocking one-half of the test beam, the undesired offset beam is blocked, while the returning transmitted beam passes into the optical system unaffected. An image is thereby produced from only the desired transmitted beam. In one configuration, the blocking device includes a semicircular aperture which is caused to rotate about the axis of the test beam. By rotating, all portions of the test beam are cyclically projected into the optical system to thereby produce a complete test image. The rotating optical stop is preferably caused to rotate rapidly to eliminate flicker in the resulting image
Discovery of a TiO emission band in the infrared spectrum of the S star NP Aurigae
We report on the discovery of an infrared emission band in the Spitzer
spectrum of the S-type AGB star NP Aurigae that is caused by TiO molecules in
the circumstellar environment. We modelled the observed emission to derive the
temperature of the TiO molecules (\approx 600 K), an upper limit on the column
density (\approx 10^17.25 cm^{-2}) and a lower limit on the spatial extent of
the layer that contains these molecules. (\approx 4.6 stellar radii). This is
the first time that this TiO emission band is observed. A search for similar
emission features in the sample of S-type stars yielded two additional
candidates. However, owing to the additional dust emission, the identification
is less stringent. By comparing the stellar characteristics of NP Aur to those
of the other stars in our sample, we find that all stars with TiO emission show
large-amplitude pulsations, s-process enrichment, and a low C/O ratio. These
characteristics might be necessary requirements for a star to show TiO in
emission, but they are not sufficient.Comment: 4 pages, 4 figures, letter to the edito
Quantum chaos in open systems: a quantum state diffusion analysis
Except for the universe, all quantum systems are open, and according to
quantum state diffusion theory, many systems localize to wave packets in the
neighborhood of phase space points. This is due to decoherence from the
interaction with the environment, and makes the quasiclassical limit of such
systems both more realistic and simpler in many respects than the more familiar
quasiclassical limit for closed systems. A linearized version of this theory
leads to the correct classical dynamics in the macroscopic limit, even for
nonlinear and chaotic systems. We apply the theory to the forced, damped
Duffing oscillator, comparing the numerical results of the full and linearized
equations, and argue that this can be used to make explicit calculations in the
decoherent histories formalism of quantum mechanics.Comment: 18 pages standard LaTeX + 9 figures; extensively trimmed; to appear
in J. Phys.
Manifesto for Digital Social Touch in Crisis
This qualitative exploratory research paper presents a Manifesto for Digital Social Touch in Crisis - a provocative call to action to designers, developers and researchers to rethink and reimagine social touch through a deeper engagement with the social and sensory aspects of touch. This call is motivated by concerns that social touch is in a crisis signaled by a decline in social touch over the past 2 decades, the problematics of inappropriate social touch, and the well documented impact of a lack of social touch on communication, relationships, and well-being and health. These concerns shape how social touch enters the digital realm and raise questions for how and when the complex space of social touch is mediated by technologies, as well the societal implications. The paper situates the manifesto in the key challenges facing haptic designers and developers identified through a series of interdisciplinary collaborative workshops with participants from computer science, design, engineering, HCI and social science from both within industry and academia, and the research literature on haptics. The features and purpose of the manifesto form are described, along with our rationale for its use, and the method of the manifesto development. The starting points, opportunities and challenges, dominant themes and tensions that shaped the manifesto statements are then elaborated on. The paper shows the potential of the manifesto form to bridge between HCI, computer science and engineers, and social scientists on the topic of social touch
U-Note: Capture the Class and Access it Everywhere
We present U-Note, an augmented teaching and learning system leveraging the
advantages of paper while letting teachers and pupils benefit from the richness
that digital media can bring to a lecture. U-Note provides automatic linking
between the notes of the pupils' notebooks and various events that occurred
during the class (such as opening digital documents, changing slides, writing
text on an interactive whiteboard...). Pupils can thus explore their notes in
conjunction with the digital documents that were presented by the teacher
during the lesson. Additionally, they can also listen to what the teacher was
saying when a given note was written. Finally, they can add their own comments
and documents to their notebooks to extend their lecture notes. We interviewed
teachers and deployed questionnaires to identify both teachers and pupils'
habits: most of the teachers use (or would like to use) digital documents in
their lectures but have problems in sharing these resources with their pupils.
The results of this study also show that paper remains the primary medium used
for knowledge keeping, sharing and editing by the pupils. Based on these
observations, we designed U-Note, which is built on three modules. U-Teach
captures the context of the class: audio recordings, the whiteboard contents,
together with the web pages, videos and slideshows displayed during the lesson.
U-Study binds pupils' paper notes (taken with an Anoto digital pen) with the
data coming from U-Teach and lets pupils access the class materials at home,
through their notebooks. U-Move lets pupils browse lecture materials on their
smartphone when they are not in front of a computer
- …