316 research outputs found

    A Predictive Minimal Model for Neutrino Masses and Mixings

    Get PDF
    A model is considered in which the scale of the heavy singlet neutrinos is a few orders of magnitude below the grand unification scale and where right-handed vector bosons play still a negligible role. In a basis with diagonal up-quark and Dirac-neutrino mass matrices it is assumed that the heavy neutrino mass matrix has only zero elements in its diagonal, in analogy to the light neutrino mass matrix in the Zee model. Connecting then the remaining matrix elements with the small parameter describing the hierarchy of quark masses and mixings and by assuming commutativity of the charged lepton with the down-quark mass matrix, the calculation of all neutrino properties can be performed in terms of the two mass differences relevant for atmospheric and solar neutrino oscillations. CP-violation is directly related to CP-violation in the quark sector.Comment: revtex, 9 pages, two references added, to be published in Phys. Rev. D presented at Neutrino' 2000, Sudbury, Canad

    THE MODEL CHARACTERISTICS OF JUMP ACTIONS STRUCTURE OF HIGH PERFORMANCE FEMALE VOLLEYBALL PLAYERS

    Get PDF
    The purpose of this study was to develop generalized and individual models of the jump actions of skilled female volleyball players. The main prerequisite for the development of the jump actions models were the results of our earlier studies of factor structure of jump actions of 10 sportswomen of the Polish volleyball team "Gedania" (Premier League) in the preparatory and competitive periods of the annual cycle of preparation. The athletes age was 22.0 +- 2.9 years, the sports experience - 8.1 +- 3.1 years, body height - 181.9 +- 8.4 years and body weight - 72.8 +- 10.8 kg. Mathematical and statistical processing of the data (the definition of M ± SD and significant differences between the samples) was performed using a standard computer program "STATISTICA 7,0". Based on the analysis of the factor structure of 20 jump actions of skilled women volleyball players determined to within 5 of the most informative indexes and their tentative values recommended for the formation of a generalized model of this structure. Comparison of individual models of jump actions of skilled women volleyball players with their generalized models in different periods of preparation can be used for the rational choice of means and methods for the increasing of the training process efficiency

    Fermion Masses and Coupling Unification in E6. Life in the Desert

    Full text link
    We present an E6E_6 Grand Unified model with a realistic pattern of fermion masses. All standard model fermions are unified in three fundamental 27-plets (i.e. supersymmetry is not invoked), which involve in addition right handed neutrinos and three families of vector like heavy quarks and leptons. The lightest of those can lie in the low TeV range, being accessible to future collider experiments. Due to the high symmetry, the masses and mixings of all fermions are closely related. The new heavy fermions play a crucial role for the quark and lepton mass matrices and the bilarge neutrino oscillations. In all channels generation mixing and CP{\cal CP} violation arise from a single antisymmetric matrix. The E6E_6 breaking proceeds via an intermediate energy region with SU(3)_L\tm SU(3)_R\tm SU(3)_C gauge symmetry and a discrete left-right symmetry. This breaking pattern leads in a straightforward way to the unification of the three gauge coupling constants at high scales, providing for a long proton lifetime. The model also provides for the unification of the top, bottom and tau Yukawa couplings and for new interesting relations in flavor and generation space.Comment: RevTex4, three ps figures, some correction

    Generation Symmetry and E_6 Unification

    Full text link
    The group E_6 for grand unification is combined with the generation symmetry group SO(3)_g. The coupling matrices in the Yukawa interaction are identified with the vacuum expectation values of scalar fields which are representations of the generation symmetry. These values determine the hierarchy of the fermions as well as their mixings and CP-violation. This generation mixing appears in conjunction with the mixing of the standard model fermions with the heavy fermions present in the lowest representation of E_6. A close connection between charged and neutral fermions is observed relating for instance the CKM mixings with the mass splittings of the light neutrinos. Numerical fits with only few parameters reproduce quantitatively all known fermion properties. The model predicts an inverted neutrino hierarchy and gives rather strict values for the light and heavy neutrino masses as well as for the 0\nu 2\beta decay parameter. It also predicts that the masses of the two lightest of six `right handed' neutrinos lie in the low TeV region.Comment: RevTex, typos corrected, refs. added. To appear in Phys Rev

    Lattice-Constrained Parametrizations of Form Factors for Semileptonic and Rare Radiative B Decays

    Get PDF
    We describe the form factors for semileptonic B to rho l nu and radiative B to K* gamma decays with just two parameters and the two form factors for semileptonic B to pi l nu decays with three parameters. The parametrizations are constrained by lattice results and are consistent with heavy quark symmetry, kinematic constraints and light cone sum rule scaling relations.Comment: 3 pages, latex, 2 eps files, uses epsf.sty and espcrc2.sty, poster presented at Lattice 97, Edinburgh, 22-26 July 199

    Fermion masses and symmetry breaking of a U(2) flavour symmetry

    Get PDF
    We show how a specific sequential breaking pattern of a U(2) flavour symmetry occurs automatically in a broad framework. The relative orientation in U(2) space of the spurion fields that breaks the U(2) symmetry is uniquely fixed, thus determining the form of the fermion mass matrices in a predictive way.Comment: 9 pages, uses amsmath.st

    Winter Review Essays

    Get PDF

    Non-local anomaly of the axial-vector current for bound states

    Get PDF
    We demonstrate that the amplitude <ργν(qˉγνγ5q)0><\rho\gamma|\partial_\nu (\bar q\gamma_\nu \gamma_5 q)|0> does not vanish in the limit of zero quark masses. This represents a new kind of violation of the classical equation of motion for the axial current and should be interpreted as the axial anomaly for bound states. The anomaly emerges in spite of the fact that the one loop integrals are ultraviolet-finite as guaranteed by the presence of the bound-state wave function. As a result, the amplitude behaves like 1/p2\sim 1/p^2 in the limit of a large momentum pp of the current. This is to be compared with the amplitude which remains finite in the limit p2p^2\to\infty. The observed effect leads to the modification of the classical equation of motion of the axial-vector current in terms of the non-local operator and can be formulated as a non-local axial anomaly for bound states.Comment: revtex, 4 pages, numerical value for κ\kappa in Eq. (19) is corrected, Eqs. (22) and (23) are modified. New references added. Results remain unchange

    Remote sensing: Physical principles, sensors and products, and the LANDSAT

    Get PDF
    Techniques of data acquisition by remote sensing are introduced in this teaching aid. The properties of the elements involved (radiant energy, topograph, atmospheric attenuation, surfaces, and sensors) are covered. Radiometers, photography, scanners, and radar are described as well as their products. Aspects of the LANDSAT system examined include the characteristics of the satellite and its orbit, the multispectral band scanner, and the return beam vidicon. Pixels (picture elements), pattern registration, and the characteristics, reception, and processing of LANDSAT imagery are also considered
    corecore