14 research outputs found

    Yrb4p, a yeast ran-GTP-binding protein involved in import of ribosomal protein L25 into the nucleus.

    No full text
    Gsp1p, the essential yeast Ran homologue, is a key regulator of transport across the nuclear pore complex (NPC). We report the identification of Yrb4p, a novel Gsp1p binding protein. The 123 kDa protein was isolated from Saccharomyces cerevisiae cells and found to be related to importin-beta, the mediator of nuclear localization signal (NLS)-dependent import into the nucleus, and to Pse1p. Like importin-beta, Yrb4p and Pse1p specifically bind to Gsp1p-GTP, protecting it from GTP hydrolysis and nucleotide exchange. The GTPase block of Gsp1p complexed to Yrb4p or Pse1p is released by Yrb1p, which contains a Gsp1p binding domain distinct from that of Yrb4p. This might reflect an in vivo function for Yrb1p. Cells disrupted for YRB4 are defective in nuclear import of ribosomal protein L25, but show no defect in the import of proteins containing classical NLSs. Expression of a Yrb4p mutant deficient in Gsp1p-binding is dominant-lethal and blocks bidirectional traffic across the NPC in wild-type cells. L25 binds to Yrb4p and Pse1p and is released by Gsp1p-GTP. Consistent with its putative role as an import receptor for L25-like proteins, Yrb4p localizes to the cytoplasm, the nucleoplasm and the NPC

    Two Isoforms of Npap60 (Nup50) Differentially Regulate Nuclear Protein Import

    No full text
    Npap60 (Nup50) is a nucleoporin that binds directly to importin α. In humans, there are two Npap60 isoforms: the long (Npap60L) and short (Npap60S) forms. Our results demonstrate that Npap60S stabilizes the binding of importin α to classical NLS-cargo, whereas Npap60L promotes the release of NLS-cargo from importin α

    A Survey of Essential Gene Function in the Yeast Cell Division Cycle

    No full text
    Mutations impacting specific stages of cell growth and division have provided a foundation for dissecting mechanisms that underlie cell cycle progression. We have undertaken an objective examination of the yeast cell cycle through flow cytometric analysis of DNA content in TetO(7) promoter mutant strains representing 75% of all essential yeast genes. More than 65% of the strains displayed specific alterations in DNA content, suggesting that reduced function of an essential gene in most cases impairs progression through a specific stage of the cell cycle. Because of the large number of essential genes required for protein biosynthesis, G1 accumulation was the most common phenotype observed in our analysis. In contrast, relatively few mutants displayed S-phase delay, and most of these were defective in genes required for DNA replication or nucleotide metabolism. G2 accumulation appeared to arise from a variety of defects. In addition to providing a global view of the diversity of essential cellular processes that influence cell cycle progression, these data also provided predictions regarding the functions of individual genes: we identified four new genes involved in protein trafficking (NUS1, PHS1, PGA2, PGA3), and we found that CSE1 and SMC4 are important for DNA replication

    Systematic Deletion and Mitotic Localization of the Nuclear Pore Complex Proteins of Aspergillus nidulans

    No full text
    To define the extent of the modification of the nuclear pore complex (NPC) during Aspergillus nidulans closed mitosis, a systematic analysis of nuclear transport genes has been completed. Thirty genes have been deleted defining 12 nonessential and 18 essential genes. Several of the nonessential deletions caused conditional phenotypes and self-sterility, whereas deletion of some essential genes caused defects in nuclear structure. Live cell imaging of endogenously tagged NPC proteins (Nups) revealed that during mitosis 14 predicted peripheral Nups, including all FG repeat Nups, disperse throughout the cell. A core mitotic NPC structure consisting of membrane Nups, all components of the An-Nup84 subcomplex, An-Nup170, and surprisingly, An-Gle1 remained throughout mitosis. We propose this minimal mitotic NPC core provides a conduit across the nuclear envelope and acts as a scaffold to which dispersed Nups return during mitotic exit. Further, unlike other dispersed Nups, An-Nup2 locates exclusively to mitotic chromatin, suggesting it may have a novel mitotic role in addition to its nuclear transport functions. Importantly, its deletion causes lethality and defects in DNA segregation. This work defines the dramatic changes in NPC composition during A. nidulans mitosis and provides insight into how NPC disassembly may be integrated with mitosis
    corecore