48 research outputs found

    Inhibitory effects of megakaryocytic cells in prostate cancer skeletal metastasis

    Get PDF
    Prostate cancer cells commonly spread through the circulation, but few successfully generate metastatic foci in bone. Osteoclastic cellular activity has been proposed as an initiating event for skeletal metastasis. Megakaryocytes (MKs) inhibit osteoclastogenesis, which could have an impact on tumor establishment in bone. Given the location of mature MKs at vascular sinusoids, they may be the first cells to physically encounter cancer cells as they enter the bone marrow. Identification of the interaction between MKs and prostate cancer cells was the focus of this study. K562 (human MK precursors) and primary MKs derived from mouse bone marrow hematopoietic precursor cells potently suppressed prostate carcinoma PC-3 cells in coculture. The inhibitory effects were specific to prostate carcinoma cells and were enhanced by direct cell-cell contact. Flow cytometry for propidium iodide (PI) and annexin V supported a proapoptotic role for K562 cells in limiting PC-3 cells. Gene expression analysis revealed reduced mRNA levels for cyclin D1, whereas mRNA levels of apoptosis-associated specklike protein containing a CARD (ASC) and death-associated protein kinase 1 (DAPK1) were increased in PC-3 cells after coculture with K562 cells. Recombinant thrombopoietin (TPO) was used to expand MKs in the marrow and resulted in decreased skeletal lesion development after intracardiac tumor inoculation. These novel findings suggest a potent inhibitory role of MKs in prostate carcinoma cell growth in vitro and in vivo. This new finding, of an interaction of metastatic tumors and hematopoietic cells during tumor colonization in bone, ultimately will lead to improved therapeutic interventions for prostate cancer patients. © 2011 American Society for Bone and Mineral Research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78486/1/204_ftp.pd

    Hygrothermal monitoring of replacement infill panels for historic timber-frame buildings: initial findings

    Get PDF
    Energy retrofits aim to improve the thermal performance of buildings’ external envelopes. With buildings of traditional construction there exists the risk that these improvements may lead to interstitial condensation and moisture accumulation. For historic timber-framed buildings, this potentially exposes the embedded historic timbers to conditions favouring fungal decay and insect infestation. Hygrothermal digital simulations can assess this risk, but these have limitations, especially regarding the study of historic and traditional materials, due to a lack of accurate material data. The research presented in this paper therefore uses the monitoring of physical test panels to examine the performance of four different infill solutions. These are, traditional wattle and daub, a composite of wood fibre and wood wool boards, expanded cork board, and hempcrete. The article focuses on the design and construction of the test cell and presents initial results from the first year of monitoring, following the initial drying phase. These showed no evidence of interstitial condensation in any of the panel build-ups, with increases in moisture content correlating directly with climatic measurements of wind-driven rain. Infill materials with low moisture permeability were seen to produce higher moisture contents at the interface with the external render due to the concentration of moisture at this point. Those panels finished in the more moisture permeable lime-hemp plaster, overall present lower moisture contents, with reduced drying times. The use of perimeter, non-moisture permeable, sealants would appear to potentially trap moisture at the junction between infill and historic timber-frame. The monitoring work is ongoing

    Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning

    Get PDF
    After chronic low back pain, Temporomandibular Joint (TMJ) disorders are the second most common musculoskeletal condition affecting 5 to 12% of the population, with an annual health cost estimated at $4 billion. Chronic disability in TMJ osteoarthritis (OA) increases with aging, and the main goal is to diagnosis before morphological degeneration occurs. Here, we address this challenge using advanced data science to capture, process and analyze 52 clinical, biological and high-resolution CBCT (radiomics) markers from TMJ OA patients and controls. We tested the diagnostic performance of four machine learning models: Logistic Regression, Random Forest, LightGBM, XGBoost. Headaches, Range of mouth opening without pain, Energy, Haralick Correlation, Entropy and interactions of TGF-β1 in Saliva and Headaches, VE-cadherin in Serum and Angiogenin in Saliva, VE-cadherin in Saliva and Headaches, PA1 in Saliva and Headaches, PA1 in Saliva and Range of mouth opening without pain; Gender and Muscle Soreness; Short Run Low Grey Level Emphasis and Headaches, Inverse Difference Moment and Trabecular Separation accurately diagnose early stages of this clinical condition. Our results show the XGBoost + LightGBM model with these features and interactions achieves the accuracy of 0.823, AUC 0.870, and F1-score 0.823 to diagnose the TMJ OA status. Thus, we expect to boost future studies into osteoarthritis patient-specific therapeutic interventions, and thereby improve the health of articular joints

    Superhydrophobic Surface Based on a Coral-Like Hierarchical Structure of ZnO

    Get PDF
    Background: Fabrication of superhydrophobic surfaces has attracted much interest in the past decade. The fabrication methods that have been studied are chemical vapour deposition, the sol-gel method, etching technique, electrochemical deposition, the layer-by-layer deposition, and so on. Simple and inexpensive methods for manufacturing environmentally stable superhydrophobic surfaces have also been proposed lately. However, work referring to the influence of special structures on the wettability, such as hierarchical ZnO nanostructures, is rare. Methodology: This study presents a simple and reproducible method to fabricate a superhydrophobic surface with microscale roughness based on zinc oxide (ZnO) hierarchical structure, which is grown by the hydrothermal method with an alkaline aqueous solution. Coral-like structures of ZnO were fabricated on a glass substrate with a micro-scale roughness, while the antennas of the coral formed the nano-scale roughness. The fresh ZnO films exhibited excellent superhydrophilicity (the apparent contact angle for water droplet was about 0u), while the ability to be wet could be changed to superhydrophobicity after spin-coating Teflon (the apparent contact angle greater than 168u). The procedure reported here can be applied to substrates consisting of other materials and having various shapes. Results: The new process is convenient and environmentally friendly compared to conventional methods. Furthermore, the hierarchical structure generates the extraordinary solid/gas/liquid three-phase contact interface, which is the essentia

    Automatic multi-anatomical skull structure segmentation of cone-beam computed tomography scans using 3D UNETR

    Get PDF
    The segmentation of medical and dental images is a fundamental step in automated clinical decision support systems. It supports the entire clinical workflow from diagnosis, therapy planning, intervention, and follow-up. In this paper, we propose a novel tool to accurately process a full-face segmentation in about 5 minutes that would otherwise require an average of 7h of manual work by experienced clinicians. This work focuses on the integration of the state-of-the-art UNEt TRansformers (UNETR) of the Medical Open Network for Artificial Intelligence (MONAI) framework. We trained and tested our models using 618 de-identified Cone-Beam Computed Tomography (CBCT) volumetric images of the head acquired with several parameters from different centers for a generalized clinical application. Our results on a 5-fold cross-validation showed high accuracy and robustness with a Dice score up to 0.962±0.02. Our code is available on our public GitHub repository

    Molecular investigation of genetic elements contributing to metronidazole resistance in Bacteroides strains

    No full text
    OBJECTIVES: The aim of this study was to investigate the constitution of nim gene types, their activating insertion sequence (IS) element, their localization (plasmid or chromosome) and cfiA gene status in metronidazole-resistant Bacteroides strains (n=26) in order to examine their interchangeability. METHODS: Southern hybridization and conjugative plasmid transfer were used to localize the nimA-E genes and plasmid functions. PCR was used to detect the IS elements and the cfiA genes. PCR-mapping was applied to detect the nim gene-associated IS elements. PCR-mapping products and a nimE gene-containing plasmid fragment were sequenced. RESULTS: Nine of the nimA genes (12) were activated by IS1168 and nine were carried on plasmids, four of which were pIP417-like. The five nimB genes were chromosomal, and two of them were associated with IS1168 and one with IS612. Of the three nimC genes, two were activated by IS1170, and one was carried on a pIP419-like plasmid. The only nimD gene was chromosomal. The five nimE strains harboured the resistance genes on plasmids: one plasmid, pBF388c, 8.3 kb, was characterized, and a novel IS-like element was demonstrated upstream of all the nimE genes. The insertion events of some of these IS elements were restricted to certain nim gene-specific positions. The 11 chromosomal nim genes displayed a positive association with the cfiA gene-specific background. CONCLUSIONS: Fourteen strains harboured the well-known genetic elements: pIP417- and pIP419-like plasmids, chromosomal nimB genes and a common nimE plasmid. However, a rate of interchangeability was also demonstrated, mostly due to combinations of nim genes and their associated IS elements harboured on different replicons
    corecore