611 research outputs found

    An empirical polytrope law for solar wind thermal electrons between 0.45 and 4.76 AU: Voyager 2 and Mariner 10

    Get PDF
    Empirical evidence is presented that solar wind thermal electrons obey a polytrope law with polytrope index gamma = 1.175 plus or minus 0.03. The Voyager 2 and Mariner 10 data used as evidence are compared and discussed. The theoretical predictions that solar wind thermal electrons in the asymptotic solar wind should obey a polytrope law with polytrope index gamma = 1.16 plus or minus. The widespread impressions in the literature that solar wind electrons behave more like an isothermal than adiabatic gas, and the arguments that Coulomb collisions are the dominant stochastic process shaping observed electron distribution functions in the solar wind are reexamined, reviewed and evaluated. The assignment of the interplanetary potential as equal to approximately seven times the temperature of the thermal electrons is discussed

    Survey of low energy plasma electrons in Saturn's magnetosphere: Voyagers 1 and 2

    Get PDF
    The low energy plasma electron environment within Saturn's magnetosphere was surveyed by the Plasma Science Experiment (PLS) during the Voyager encounters with Saturn. Over the full energy range of the PLS instrument (10 eV to 6 keV) the electron distribution functions are clearly non-Maxwellian in character; they are composed of a cold (thermal) component with Maxwellian shape and a hot (suprathermal) non-Maxwellian component. A large scale positive radial gradient in electron temperature is observed, increasing from less than 1 eV in the inner magnetosphere to as high as 800 eV in the outer magnetosphere. Three fundamentally different plasma regimes were identified from the measurements: (1) the hot outer magnetosphere, (2) the extended plasma sheet, and (3) the inner plasma torus

    Survey of the plasma electron environment of Jupiter: A view from Voyager

    Get PDF
    The plasma environment within Jupiter's bow shock is considered in terms of the in situ, calibrated electron plasma measurements made between 10 eV and 5.95 keV by the Voyager plasma science experiment (PLS). Measurements were analyzed and corrected for spacecraft potential variations; the data were reduced to nearly model independent macroscopic parameters of the local electron density and temperature. It is tentatively concluded that the radial temperature profile within the plasma sheet is caused by the intermixing of two different electron populations that probably have different temporal histories and spatial paths to their local observation. The cool plasma source of the plasma sheet and spikes is probably the Io plasma torus and arrives in the plasma sheet as a result of flux tube interchange motions or other generalized transport which can be accomplished without diverting the plasma from the centrifugal equator. The hot suprathermal populations in the plasma sheet have most recently come from the sparse, hot mid-latitude "bath" of electrons which were directly observed juxtaposed to the plasma sheet

    Logarithmic roughening in a growth process with edge evaporation

    Full text link
    Roughening transitions are often characterized by unusual scaling properties. As an example we investigate the roughening transition in a solid-on-solid growth process with edge evaporation [Phys. Rev. Lett. 76, 2746 (1996)], where the interface is known to roughen logarithmically with time. Performing high-precision simulations we find appropriate scaling forms for various quantities. Moreover we present a simple approximation explaining why the interface roughens logarithmically.Comment: revtex, 6 pages, 7 eps figure

    Cassini CAPS-ELS observations of negative ions in Titan's ionosphere: trends of density with altitude

    Get PDF
    Observations with the Electron Spectrometer sensor of the Cassini Plasma Spectrometer (CAPS-ELS) have revealed the existence of negative ions in Titan's ionosphere. Negative ions are observed during encounters whenever the instrument points in the ram direction at altitudes 950–1400 km. Complex hydrocarbon and nitrile chemical processes are believed to take place which play a role in haze formation. The heaviest ions observed so far have masses up to 13,800 amu/q. Using data from 34 Titan encounters, we show for the first time negative ion density trends of different mass groups, including total densities, with altitude. We determine peak densities and the associated altitudes at which they are observed and the highest altitudes at which individual mass groups are found

    Magnetic signatures of plasma-depleted flux tubes in the Saturnian inner magnetosphere

    Get PDF
    Initial Cassini observations have revealed evidence for interchanging magnetic flux tubes in the inner Saturnian magnetosphere. Some of the reported flux tubes differ remarkably by their magnetic signatures, having a depressed or enhanced magnetic pressure relative to their surroundings. The ones with stronger fields have been interpreted previously as either outward moving mass-loaded or inward moving plasma-depleted flux tubes based on magnetometer observations only. We use detailed multi-instrumental observations of small and large density depletions in the inner Saturnian magnetosphere from Cassini Rev. A orbit that enable us to discriminate amongst the two previous and opposite interpretations. Our analysis undoubtedly confirms the similar nature of both types of reported interchanging magnetic flux tubes, which are plasma-depleted, whatever their magnetic signatures are. Their different magnetic signature is clearly an effect associated with latitude. These Saturnian plasma-depleted flux tubes ultimately may play a similar role as the Jovian ones

    Generalized Smoluchowski equation with correlation between clusters

    Full text link
    In this paper we compute new reaction rates of the Smoluchowski equation which takes into account correlations. The new rate K = KMF + KC is the sum of two terms. The first term is the known Smoluchowski rate with the mean-field approximation. The second takes into account a correlation between clusters. For this purpose we introduce the average path of a cluster. We relate the length of this path to the reaction rate of the Smoluchowski equation. We solve the implicit dependence between the average path and the density of clusters. We show that this correlation length is the same for all clusters. Our result depends strongly on the spatial dimension d. The mean-field term KMFi,j = (Di + Dj)(rj + ri)d-2, which vanishes for d = 1 and is valid up to logarithmic correction for d = 2, is the usual rate found with the Smoluchowski model without correlation (where ri is the radius and Di is the diffusion constant of the cluster). We compute a new rate: the correlation rate K_{i,j}^{C} (D_i+D_j)(r_j+r_i)^{d-1}M{\big(\frac{d-1}{d_f}}\big) is valid for d \leq 1(where M(\alpha) = \sum+\infty i=1i\alphaNi is the moment of the density of clusters and df is the fractal dimension of the cluster). The result is valid for a large class of diffusion processes and mass radius relations. This approach confirms some analytical solutions in d 1 found with other methods. We also show Monte Carlo simulations which illustrate some exact new solvable models

    Rotation Rate of Saturn's Magnetosphere using CAPS Plasma Measurements

    Get PDF
    We present the present status of an investigation of the rotation rate of Saturn's magnetosphere using a 3D velocity moment technique being developed at Goddard which is similar to the 2D version used by Sittler et al. for SOI and similar to that used by Thomsen et al.. This technique allows one to nearly cover the full energy range of the Cassini Plasma Spectrometer (CAPS) IMS from 1 V . E/Q < 50 kV. Since our technique maps the observations into a local inertial frame, it does work during roll maneuvers. We make comparisons with the bi-Maxwellian fitting technique developed by Wilson et al. and the similar velocity moment technique by Thomsen et al. . We concentrate our analysis when ion composition data is available, which is used to weight the non-compositional data, referred to as singles data, to separate H+, H2+ and water group ions (W+) from each other. The chosen periods have high enough telemetry rates (4 kbps or higher) so that coincidence ion data, similar to that used by Sittler et al. for SOI is available. The ion data set is especially valuable for measuring flow velocities for protons, which are more difficult to derive using singles data within the inner magnetosphere, where the signal is dominated by heavy ions (i.e., proton peak merges with W+ peak as low energy shoulder). Our technique uses a flux function, which is zero in the proper plasma flow frame, to estimate fluid parameter uncertainties. The comparisons investigate the experimental errors and potential for systematic errors in the analyses, including ours. The rolls provide the best data set when it comes to getting 4PI coverage of the plasma but are more susceptible to time aliasing effects. In the future we will then make comparisons with magnetic field observations, Saturn ionosphere conductivities as presently known and the field aligned currents necessary for the planet to enforce corotation of the rotating plasma

    Application of a MHD hybrid solar wind model with latitudinal dependences to Ulysses data at minimum

    Get PDF
    In a previous work, Ulysses data was analyzed to build a complete axisymmetric MHD solution for the solar wind at minimum including rotation and the initial flaring of the solar wind in the low corona. This model has some problems in reproducing the values of magnetic field at 1 AU despite the correct values of the velocity. Here, we intend to extend the previous analysis to another type of solutions and to improve our modelling of the wind from the solar surface to 1 AU. We compare the previous results to those obtained with a fully helicoidal model and construct a hybrid model combining both previous solutions, keeping the flexibility of the parent models in the appropriate domain. From the solar surface to the Alfven, point, a three component solution for velocity and magnetic field is used, reproducing the complex wind geometry and the well-known flaring of the field lines observed in coronal holes. From the Alfven radius to 1 AU and further, the hybrid model keeps the latitudinal dependences as flexible as possible, in order to deal with the sharp variations near the equator and we use the helicoidal solution, turning the poloidal streamlines into radial ones. Despite the absence of the initial flaring, the helicoidal model and the first hybrid solution suffer from the same low values of the magnetic field at 1 AU. However, by adjusting the parameters with a second hybrid solution, we are able to reproduce both the velocity and magnetic profiles observed by Ulysses and a reasonable description of the low corona, provided that a certain amount of energy deposit exists along the flow. The present paper shows that analytical axisymmetric solutions can be constructed to reproduce the solar structure and dynamics from 1 solar radius up to 1 AU.Comment: 12 pages, 16 figure
    • …
    corecore