44 research outputs found

    The Mesozoic along-strike tectono-metamorphic segmentation of Longmen Shan (eastern Tibetan plateau)

    Get PDF
    The Longmen Shan belt (eastern border of the Tibetan plateau) constitutes a tectonically active region as demonstrated by the occurrence of the unexpected 2008 Mw 7.9 Wenchuan and 2013 Mw 6.6 Lushan earthquakes in the central and southern parts of the belt respectively. These events revealed the necessity of a better understanding of the long‐term geological evolution of the belt and its effect on the present dynamics and crustal structure. New structural and thermobarometric data offer a comprehensive dataset of the paleo‐temperatures across the belt and P‐T estimates for low‐grade metamorphic domains. In the central Longmen Shan, two metamorphic jumps of 150‐200°C, 5‐6 kbar and ~50 °C, 3‐5 kbar acquired during the Early Mesozoic are observed across the Wenchuan and Beichuan faults respectively, attesting to their thrusting movement and unrevealing a major decollement between the allochtonous Songpan‐Garze metasedimentary cover (at T > 500°C) and the autochtonous units and the basement (T < 400°C). In the southern Longmen Shan, the only greenschist‐facies metamorphism is observed both in the basement (360 ± 30°C, 6 ± 2 kbar) and in the metasedimentary cover (350 ± 30°C, 3 ± 1 kbar). Peak conditions were reached at c. 80‐60 Ma in the basement and c. 55‐33 Ma in the cover, c. 50 Ma after the greenschist‐facies metamorphic overprint observed in the central Longmen Shan (c. 150‐120 Ma). This along‐strike metamorphic segmentation coincides well with the present fault segmentation and reveals that the central and southern Longmen Shan experienced different tectono‐metamorphic histories since the Mesozoic

    Seismic stratigraphy and sediment cores reveal lake-level fluctuations in Lake Iznik (NW Turkey) over the past ∼70 ka

    Get PDF
    Our study aims to understand the palaeohydrological history of Lake Iznik and unravel the complex interplay between climatic, tectonic, and environmental factors that have shaped this Turkish basin. Through the analysis of seismic stratigraphy and sediment cores, we reveal a significant lowstand, indicating a lake level 60 m lower than today at ∼70 ka BP. Subsequently, a major phase of stepwise transgression is evidenced by 13 buried palaeoshorelines between ∼70 and 45 ka BP. From 45 to ∼10 ka cal BP, strong currents controlled the sedimentation in the lake, as evidenced by the occurrence of contourite drifts. Between ∼14 and 10 ka cal. BP, a major lowstand indicating a drier climate interrupted the current-controlled sedimentation regime. From ∼10 ka cal. BP, the subsequent increase in lake level occurred at the same time as the reconnection between the Mediterranean and Black seas. Archaeological evidence, including submerged structures of a basilica, establishes a link between lake-level changes and human settlement during the last millennium. The level of Lake Iznik has since continued to fluctuate due to climate change, tectonic events, and human activity

    Lateral variations in the signature of earthquake‐generated deposits in Lake Iznik, NW Turkey

    Get PDF
    Using lake-sediment cores to document past seismicity requires a comprehen- sive understanding of possible lateral variations in depositional processes. This study aims to reveal the lateral variations in earthquake-induced event deposits throughout Lake Iznik, a large lake located on the middle strand of the North Anatolian Fault. Based on stratigraphic, sedimentological and geochemical anal- yses of 14 sediment cores from two subbasins across the lake, five different types of event deposits (T1–T5) were identified and characterised. One event deposit type (T5) is restricted to a delta mouth, characterised by the occurrence of au- thigenic Fe-Mn carbonates and interpreted to result from flood events. The four other types of event deposits are characterised by their synchronicity between cores and their age consistency with historical earthquakes and are interpreted to be likely generated by earthquakes. The locally prominent 1065 CE historical earthquake that ruptured the sub-lacustrine Iznik Fault produced at least three different types of event deposits. One deposit type (T2) is only observed for this very local earthquake, implying that the type of event deposit might also depend on ground-motion parameters. At the lake scale, the occurrence of various event deposits depends on the flow distance from the source of sediment destabilisa- tions to the coring site

    Recycling Argon through Metamorphic Reactions: the Record in Symplectites

    Get PDF
    The 40Ar/39Ar ages of metamorphic micas that crystallized at high temperatures are commonly interpreted as cooling ages, with grains considered to have lost 40Ar via thermally-driven diffusion into the grain boundary network. Recently reported laser-ablation data suggest that the spatial distribution of Ar in metamorphic micas does not always conform to the patterns predicted by diffusion theory and that despite high metamorphic temperatures, argon was not removed efficiently from the local system during metamorphic evolution. In the Western Gneiss Region (WGR), Norway, felsic gneisses preserve microtextural evidence for the breakdown of phengite to biotite and plagioclase symplectites during near isothermal decompression from c. 20–25 to c. 8–12 kbar at ~700°C. These samples provide an ideal natural laboratory to assess whether the complete replacement of one K-bearing mineral by another at high temperatures completely ‘resets’ the Ar clock, or whether there is some inheritance of 40Ar in the neo-crystallized phase. The timing of the high-temperature portion of the WGR metamorphic cycle has been well constrained in previous studies. However, the timing of cooling following the overprint is still much debated. In-situ laser ablation spot dating in phengite, biotite-plagioclase symplectites and coarser, texturally later biotite yielded 40Ar/39Ar ages that span much of the metamorphic cycle. Together these data show that despite residence at temperatures of ~700°C, Ar is not completely removed by diffusive loss or during metamorphic recrystallization. Instead, Ar released during phengite breakdown appears to be partially reincorporated into the newly crystallizing biotite and plagioclase (or is trapped in fluid inclusions in those phases) within a close system. Our data show that the microtextural and petrographic evolution of the sample being dated provides a critical framework in which local 40Ar recycling can be tracked, thus potentially allowing 40Ar/39Ar dates to be linked more accurately to metamorphic history

    Segmentation and Holocene Behavior of the Middle Strand of the North Anatolian Fault (NW Turkey)

    No full text
    International audienceThe North Anatolian Fault (NAF) in the Marmara region is composed of three parallel strands all separated by ∼50 km. The activity of the middle strand, which borders the southern edge of the Marmara Sea, is much debated because of its present-day very low seismicity. This contrasts with historical, archeological and paleoseismological evidence, which suggest several destructive earthquakes have occurred during the last 2000 years. Our study aims to better constrain seismic hazard on the middle strand by exploring its Holocene paleoseismicity. For this, we mapped 148 km of the eastern part of the middle strand, using high-resolution satellite imagery. A series of landforms offset by the middle strand activity have been systematically measured to recover the past ruptures. Three Late Pleistocene-Holocene terraces have been dated with the terrestrial cosmogenic nuclide method, constraining a horizontal slip rate of urn:x-wiley:02787407:media:tect21626:tect21626-math-0001 mm/yr. The statistical analysis of the offsets evidences several major ruptures preserved in the landscape, with coseismic lateral displacements ranging between 3 and 6.5 m. This corresponds to Mw ∼7.3 earthquakes able to propagate along several fault segments. Historical seismicity and paleoseismology data suggest that the last large earthquakes along the middle strand of the NAF (MNAF) happened in 1065 CE and between the 14th and 18th centuries CE. Since then, the MNAF may have accumulated enough stress to generate a destructive rupture

    Subduction and Orogeny: Introduction to the Special volume

    No full text
    International audienceSubduction processes play a major role in plate tectonics and the subsequent geological evolution of Earth. This special issue focuses on ongoing research in subduction dynamics to a large extent (oceanic subduction, continental subduction, obduction…) for both past and active subduction zones and into mountain building processes and the early evolution of orogens. It puts together various approaches combining geophysics (imaging of subduction zones), petrology/geochemistry (metamorphic analysis of HP-UHP rocks, fluid geochemistry and magmatic signal, geochronology), seismology and geodesy (present-day evolution of subduction zones, active tectonics), structural geology (structure and evolution of mountain belts), and numerical modelling to provide a full spectrum of tools that can be used to constrain the nature and evolution of subduction processes and orogeny. Studies presented in this special issue range from the long-term (orogenic cycle) to short-term (seismic cycle)

    Lithospheric structures across the Longmen Shan mountain range from seismologic and gravimetric data

    No full text
    abstract no. T33A-2031The Wenchuan earthquake was somehow unexpected because it occurred in a region where the present-day deformation was not considered to be very high, as attested by GPS measurements and the lack of a well- developed foreland basin to the East of the Longmen Shan range. These observations, together with the persistence of a high topographic border are at the heart of a wide variety of mechanical models, among which several go by the existence of a low viscosity channel at mid crustal depth. Thus, bringing strong constrains on the lithospheric structure and composition in this region is a key to firm up these models. This is what motivated a sino-french team to deploy a dense seismic network between November 2005 and April 2007 in the central part of the Longmen Shan belt, very close to where the Wenchuan earthquake occurred one year after the end of this experiment. Applying the receiver function method to the teleseismic earthquakes recorded by the 36 seismic stations, we obtain a detailed and continuous image of the crustal structure from the Sichuan basin up to the Xianshuhe fault. This image reveals a crustal discontinuity at about 15km depth which may connect with the ruptured zone of the Wenchuan earthquake. Moreover, our results highlight an abrupt 20 km Moho offset between the Sichuan Basin and the Tibetan plateau and this sharp Moho offset is consistent with regional gravity data and microgravity measurements acquired along the seismological profile. These observations indicate a major contrast in strength between the Tibetan plateau and the Yangtze craton, the latest acting as a rigid block resisting the eastward displacement of the Tibetan Plateau. However, the mean crustal Poisson ratio, deduced from the analysis of the receiver functions, is low to normal beneath all the stations located on the Songpan-Ganze terrane, which suggests the absence of a thick and extensive zone of partial melt within the crust of this region.link_to_OA_fulltex
    corecore