111 research outputs found

    Packaging biological cargoes in mesoporous materials: Opportunities for drug delivery

    Get PDF
    Introduction: Confinement of biomolecules in structured nanoporous materials offers several desirable features ranging from chemical and thermal stability, to resistance to degradation from the external environment. A new generation of mesoporous materials presents exciting new possibilities for the formulation and controlled release of biological agents. Such materials address niche applications in enteral and parenteral delivery of biologics, such as peptides, polypeptides, enzymes and proteins for use as therapeutics, imaging agents, biosensors, and adjuvants.Areas covered: Mesoporous silica Santa Barbara Amorphous-15 (SBA-15), with its unique, tunable pore diameter, and easily functionalized surface, provides a representative example of this new generation of materials. Here, we review recent advances in the design and synthesis of nanostructured mesoporous materials, focusing on SBA-15, and highlight opportunities for the delivery of biological agents to various organ and tissue compartments.Expert opinion: The SBA-15 platform provides a delivery carrier that is inherently separated from the active biologic due to distinct intra and extra-particle environments. This permits the SBA-15 platform to not require direct modification of the active biological therapeutic. Additionally, this makes the platform universal and allows for its application independent of the desired methods of discovery and development. The SBA-15 platform also directly addresses issues of targeted delivery and controlled release, although future challenges in the implementation of this platform reside in particle design, biocompatibility, and the tunability of the internal and external material properties. Examples illustrating the flexibility in the application of the SBA-15 platform are also discussed

    Altered gut microbiota in infants is associated with respiratory syncytial virus disease severity

    Get PDF
    Β© 2020 The Author(s). Background: Respiratory syncytial virus (RSV) is the number one cause of lower respiratory tract infections in infants. There are still no vaccines or specific antiviral therapies against RSV, mainly due to the inadequate understanding of RSV pathogenesis. Recent data suggest a role for gut microbiota community structure in determining RSV disease severity. Our objective was to determine the gut microbial profile associated with severe RSV patients, which could be used to help identify at-risk patients and develop therapeutically protective microbial assemblages that may stimulate immuno-protection. Results: We enrolled 95 infants from Le Bonheur during the 2014 to 2016 RSV season. Of these, 37 were well-babies and 58 were hospitalized with RSV. Of the RSV infected babies, 53 remained in the pediatric ward (moderate) and 5 were moved to the pediatric intensive care unit at a later date (severe). Stool samples were collected within 72 h of admission; and the composition of gut microbiota was evaluated via 16S sequencing of fecal DNA. There was a significant enrichment in S24_7, Clostridiales, Odoribacteraceae, Lactobacillaceae, and Actinomyces in RSV (moderate and severe) vs. controls. Patients with severe RSV disease had slightly lower alpha diversity (richness and evenness of the bacterial community) of the gut microbiota compared to patients with moderate RSV and healthy controls. Beta diversity (overall microbial composition) was significantly different between all RSV patients (moderate and severe) compared to controls and had significant microbial composition separating all three groups (control, moderate RSV, and severe RSV). Conclusions: Collectively, these data demonstrate that a unique gut microbial profile is associated with RSV disease and with severe RSV disease with admission to the pediatric intensive care unit. More mechanistic experiments are needed to determine whether the differences observed in gut microbiota are the cause or consequences of severe RSV disease

    Confinement Facilitated Protein Stabilization As Investigated by Small-Angle Neutron Scattering

    Get PDF
    While mesoporous silicas have been shown to be a compelling candidate for drug delivery and the implementation of biotechnological applications requiring protein confinement and immobilization, the understanding of protein behavior upon physical adsorption into silica pores is limited. Many indirect methods are available to assess general adsorbed protein stability, such as Fourier-transform infrared spectroscopy and activity assays. However, the limitation of these methods is that spatial protein arrangement within the pores cannot be assessed. Mesoporous silicas pose a distinct challenge to direct methods, such as transmission electron microscopy, which lacks the contrast and resolution required to adequately observe immobilized protein structure, and nuclear magnetic resonance, which is computationally intensive and requires knowledge of the primary structure a priori. Small-angle neutron scattering can surmount these limitations and observe spatial protein arrangement within pores. Hereby, we observe the stabilization of fluid-like protein arrangement, facilitated by geometry-dependent crowding effects in cylindrical pores of ordered mesoporous silica, SBA-15. Stabilization is induced from a fluid-like structure factor, which is observed for samples at maximum protein loading in SBA-15 with pore diameters of 6.4 and 8.1 nm. Application of this effect for prevention of irreversible aggregation in high concentration environments is proposed

    Urachal carcinoma presenting with chronic mucusuria: a case report

    Get PDF
    Urachal adenocarcinoma is a rare tumor and represents 0.17–0.34% of all bladder tumors. It has an insidious course and variable clinical presentation. We present a case report of a 58 year old white male with an urachal cyst who suffered irritative voiding symptoms and long term mucusuria, since childhood. After surgical removal of the cyst with a partial cystectomy a mucus adenocarcinoma was diagnosed histologically

    Could salvage surgery after chemotherapy have clinical impact on cancer survival of patients with metastatic urothelial carcinoma?

    Get PDF
    The clinical impact of salvage surgery after chemotherapy on cancer survival of patients with metastatic urothelial carcinoma is controversial. We aimed to verify the clinical role of salvage surgery by analyzing the long-term outcome in patients with urothelial carcinoma treated by chemotherapy. Between 2003 and 2010 at a single institution, 31 of 47 patients (66%) with metastatic urothelial carcinoma showed objective responses (CR in 4, PR in 27) after multiple courses of cisplatin/gemcitabine/paclitaxel-based chemotherapy, and a cohort of patients with partial response (PR) were retrospectively enrolled. Twelve (10 male and 2 female, median age 64.0 years) of 27 patients with PR underwent salvage surgeries after the chemotherapy: metastatectomy of residual lesions (10 retroperitoneal lymph nodes, 2 lung), and 6 radical surgeries for primary lesions as well. Progression-free survival and overall patient survival rates were analyzed retrospectively and compared with those of patients without salvage surgery. All 12 patients achieved surgical CR. Pathological findings of metastatic lesions showed viable cancer cells in 3 patients. In univariate analysis, sole salvage surgery affected overall survival in 27 patients with PR to the chemotherapy (P = 0.0037). Progression-free survival and overall survival rates in patients with salvage surgery were better than those in 15 PR patients without the surgery (39.8 vs. 0%, and 71.6 vs. 12.1% at 3 years, P = 0.01032 and 0.01048; log-rank test). Salvage surgery for patients with residual tumor who achieve partial response to chemotherapy could have a possible impact on cancer survival

    Perinatal maternal antibiotic exposure augments lung injury in offspring in experimental bronchopulmonary dysplasia

    Get PDF
    Copyright Β© 2020 the American Physiological Society. During the newborn period, intestinal commensal bacteria influence pulmonary mucosal immunology via the gut-lung axis. Epidemiological studies have linked perinatal antibiotic exposure in human newborns to an increased risk for bronchopulmonary dysplasia, but whether this effect is mediated by the gut-lung axis is unknown. To explore antibiotic disruption of the newborn gut-lung axis, we studied how perinatal maternal antibiotic exposure influenced lung injury in a hyperoxia-based mouse model of bronchopulmonary dysplasia. We report that disruption of intestinal commensal colonization during the perinatal period promotes a more severe bronchopulmonary dysplasia phenotype characterized by increased mortality and pulmonary fibrosis. Mechanistically, metagenomic shifts were associated with decreased IL-22 expression in bronchoalveolar lavage and were independent of hyperoxia-induced inflammasome activation. Collectively, these results demonstrate a previously unrecognized influence of the gut-lung axis during the development of neonatal lung injury, which could be leveraged to ameliorate the most severe and persistent pulmonary complication of preterm birth

    p63 Expression Defines a Lethal Subset of Muscle-Invasive Bladder Cancers

    Get PDF
    <div><h3>Background</h3><p>p63 is a member of the p53 family that has been implicated in maintenance of epithelial stem cell compartments. Previous studies demonstrated that p63 is downregulated in muscle-invasive bladder cancers, but the relationship between p63 expression and survival is not clear.</p> <h3>Methodology/Principal Findings</h3><p>We used real-time PCR to characterize p63 expression and several genes implicated in epithelial-to-mesenchymal transition (EMT) in human bladder cancer cell lines (nβ€Š=β€Š15) and primary tumors (nβ€Š=β€Š101). We correlated tumor marker expression with stage, disease-specific (DSS), and overall survival (OS). Expression of E-cadherin and p63 correlated directly with one another and inversely with expression of the mesenchymal markers Zeb-1, Zeb-2, and vimentin. Non-muscle-invasive (Ta and T1) bladder cancers uniformly expressed high levels of E-cadherin and p63 and low levels of the mesenchymal markers. Interestingly, a subset of muscle-invasive (T2–T4) tumors maintained high levels of E-cadherin and p63 expression. As expected, there was a strongly significant correlation between EMT marker expression and muscle invasion (p<0.0001). However, OS was shorter in patients with muscle-invasive tumors that retained p63 (pβ€Š=β€Š0.007).</p> <h3>Conclusions/Significance</h3><p>Our data confirm that molecular markers of EMT are elevated in muscle-invasive bladder cancers, but interestingly, retention of the β€œepithelial” marker p63 in muscle-invasive tumors is associated with a worse outcome.</p> </div

    Urachal carcinoma presenting with chronic mucusuria: a case report

    Get PDF
    Urachal adenocarcinoma is a rare tumor and represents 0.17–0.34% of all bladder tumors. It has an insidious course and variable clinical presentation. We present a case report of a 58 year old white male with an urachal cyst who suffered irritative voiding symptoms and long term mucusuria, since childhood. After surgical removal of the cyst with a partial cystectomy a mucus adenocarcinoma was diagnosed histologically

    Nivolumab Alone and With Ipilimumab in Previously Treated Metastatic Urothelial Carcinoma: CheckMate 032 Nivolumab 1 mg/kg Plus Ipilimumab 3 mg/kg Expansion Cohort Results

    Get PDF
    PURPOSE CheckMate 032 is an open-label, multicohort study that includes patients with unresectable locally advanced or metastatic urothelial carcinoma (mUC) treated with nivolumab 3 mg/kg monotherapy every 2 weeks (NIVO3), nivolumab 3 mg/kg plus ipilimumab 1 mg/kg every 3 weeks for four doses followed by nivolumab monotherapy 3 mg/kg every 2 weeks (NIVO3+IPI1), or nivolumab 1 mg/kg plus ipilimumab 3 mg/kg every 3 weeks for four doses followed by nivolumab monotherapy 3 mg/kg every 2 weeks (NIVO1+IPI3). We report on the expanded NIVO1+IPI3 cohort and extended follow-up for the NIVO3 and NIVO3+IPI1 cohorts. METHODS Patients with platinum-pretreated mUC were enrolled in this phase I/II multicenter study to receive NIVO3, NIVO3+IPI1, or NIVO1+IPI3 until disease progression or unacceptable toxicity. Primary end point was investigator-assessed objective response rate per Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, including duration of response. RESULTS Seventy-eight patients were treated with NIVO3 (minimum follow-up, 37.7 months), 104 with NIVO3+IPI1 (minimum follow-up, 38.8 months), and 92 with NIVO1+IPI3 (minimum follow-up, 7.9 months). Objective response rate was 25.6%, 26.9%, and 38.0% in the NIVO3, NIVO3+IPI1, and NIVO1+IPI3 arms, respectively. Median duration of response was more than 22 months in all arms. Grade 3 or 4 treatment-related adverse events occurred in 21 (26.9%), 32 (30.8%), and 36 (39.1%) patients treated with NIVO3, NIVO3+IPI1, and NIVO1+IPI3, respectively. Grade 5 treatment-related pneumonitis occurred in one patient each in the NIVO3 and NIVO3+IPI1 arms. CONCLUSION With longer follow-up, NIVO3 demonstrated sustained antitumor activity alone and in combination with ipilimumab. NIVO1+IPI3 provided the greatest antitumor activity of all regimens, with a manageable safety profile. This result not only supports additional study of NIVO1+IPI3 in mUC, but demonstrates the potential benefit of immunotherapy combinations in this disease
    • …
    corecore