548 research outputs found
Carbon Nanotube Gas Sensor Using Neural Networks
The need to identify the presence and quantify the concentrations of gases and vapors is ubiquitous in NASA missions and societal applications. Sensors for air quality monitoring in crew cabins and ISS have been actively under development (Ref. 1). In particular, measuring the concentration of CO2 and NH3 is important because high concentrations of these gases pose a risk to ISS crew health. Detection of fuel and oxidant leaks in crew vehicles is critical for ensuring mission safety. Accurate gas and vapor concentrations can be measured, but this typically requires bulky and expensive instrumentation. Recently, inexpensive sensors with low power demands have been fabricated for use on the International Space Station (ISS). Carbon Nanotube (CNT) based chemical sensors are one type of these sensors. CNT sensors meet the requirements for low cost and ease of fabrication for deployment on the ISS. However, converting the measured signal from the sensors to human readable indicators of atmospheric air quality and safety is challenging. This is because it is difficult to develop an analytical model that maps the CNT sensor output signal to gas concentration. Training a neural network on CNT sensor data to predict gas concentration is more effective than developing an analytic approach to calculate the concentration from the same data set. With this in mind a neural network was created to tackle this challenge of converting the measured signal into CO2 and NH3 concentration values
Flame retardant coating on cotton fabric with phosphorus containing polymeric film by admicellar polymerization
In this study, 2-methacryloyloxyethyl phosphorylcholine monomer has been polymerized using azobis-isobutyronitrileinitiator on the surface of cotton fabric by admicellar polymerization with the assistance of anionic surfactant(dodecylbenzenesulphonic acid sodium salt) along with NaCl as electrolyte. The polymeric film formed on cotton surfacehas been characterized by FTIR and SEM. FTIR spectrum shows additional bands at 1720 cm-1 (C=O str.), 1258 cm-1(P=O str.) and 1078 cm-1 (P ̶ O ̶ C str.) of phosphorus based polymer formed on cotton fabric. Thermal behaviour innitrogen atmosphere is also studied which shows that onset temperature of degradation of treated cotton fabric decreases by37 ºC and char yield increases by 21.7% at 600 ºC. The burning behaviour of treated cotton fabric is investigated by 45º autoflammability and limiting oxygen index tests. The pure cotton fabric burns the entire length of 15 cm sample in 11.8 s buttreated cotton fabric self-extinguishes in auto flammability test. The durability of treated cotton fabric has also been studiedup to two home launderings
Many-Body Interactions in a Sample of Ultracold Rydberg Atoms with Varying Dimensions and Densities
Ultracold highly excited atoms in a magneto-optical trap (MOT) are strongly coupled by the dipole-dipole interaction. We have investigated the importance of many-body effects by controlling the dimensionality and density of the excited sample. We excited three different cylindrical volumes of atoms in the MOT to Rydberg states. At small radius, where the sample is nearly one-dimensional, many-body interactions are suppressed. At larger radii, the sample becomes three-dimensional and many-body effects are apparent
Many-body Interactions in a Sample of Ultracold Rydberg Atoms with Varying Dimensions and Densities
Ultracold highly excited atoms in a magneto-optical trap (MOT) are strongly coupled by the dipole-dipole interaction. We have investigated the importance of many-body effects by controlling the dimensionality and density of the excited sample. We excited three different cylindrical volumes of atoms in the MOT to Rydberg states. At small radius, where the sample is nearly one-dimensional, many-body interactions are suppressed. At larger radii, the sample becomes three-dimensional and many-body effects are apparent
Poly(carbonate-imide) polymer
A novel series of polymers and copolymers based on a polyimide backbone with the incorporation of carbonate moieties along the backbone. The process for preparing these polymers and copolymers is also disclosed as is a novel series of dinitrodiphenyl carbonates and diaminodiphenyl carbonates. The novel polymers and copolymers exhibit high temperature capability and because of the carbonate unit, many exhibit a high degree of order and/or crystallinity
Secondary Metabolic Gene Cluster Silencing in Aspergillus Nidulans
In contrast to most primary metabolism genes, the genes involved in secondary metabolism and certain nutrient utilization pathways are clustered in fungi. Recently a nuclear protein, LaeA, was found to be required for the transcription of several secondary metabolite gene clusters in Aspergillus nidulans. Here we show that LaeA regulation does not extend to nutrient utilization or the spoC1 sporulation clusters. One of the secondary metabolite clusters regulated by LaeA contains the positive regulatory (i.e. aflR) and biosynthetic genes required for biosynthesis of sterigmatocystin (ST), a carcinogenic toxin. Analysis of ST gene cluster expression indicates LaeA regulation of the cluster is location specific as transcription of genes bordering the ST cluster are unaffected in a ΔlaeA mutant and placement of a primary metabolic gene, argB, in the ST cluster resulted in argB silencing in the ΔlaeA background. ST cluster gene expression was remediated when an additional copy of aflR was placed outside of the cluster but not when placed in the cluster. Site-specific mutation of an s-adenosyl methionine (AdoMet) binding site in LaeA generated a ΔlaeA phenotype suggesting the protein to be a methyltransferase
Role for Sumoylation in Systemic Inflammation and Immune Homeostasis in Drosophila Larvae
To counter systemic risk of infection by parasitic wasps, Drosophila larvae activate humoral immunity in the fat body and mount a robust cellular response resulting in encapsulation of the wasp egg. Innate immune reactions are tightly regulated and are resolved within hours. To understand the mechanisms underlying activation and resolution of the egg encapsulation response and examine if failure of the latter develops into systemic inflammatory disease, we correlated parasitic wasp-induced changes in the Drosophila larva with systemic chronic conditions in sumoylation-deficient mutants. We have previously reported that loss of either Cactus, the Drosophila (IκB) protein or Ubc9, the SUMO-conjugating enzyme, leads to constitutive activation of the humoral and cellular pathways, hematopoietic overproliferation and tumorogenesis. Here we report that parasite infection simultaneously activates NF-κB-dependent transcription of Spätzle processing enzyme (SPE) and cactus. Endogenous Spätzle protein (the Toll ligand) is expressed in immune cells and excessive SPE or Spätzle is pro-inflammatory. Consistent with this function, loss of Spz suppresses Ubc9− defects. In contrast to the pro-inflammatory roles of SPE and Spätzle, Cactus and Ubc9 exert an anti-inflammatory effect. We show that Ubc9 maintains steady state levels of Cactus protein. In a series of immuno-genetic experiments, we demonstrate the existence of a robust bidirectional interaction between blood cells and the fat body and propose that wasp infection activates Toll signaling in both compartments via extracellular activation of Spätzle. Within each organ, the IκB/Ubc9-dependent inhibitory feedback resolves immune signaling and restores homeostasis. The loss of this feedback leads to chronic inflammation. Our studies not only provide an integrated framework for understanding the molecular basis of the evolutionary arms race between insect hosts and their parasites, but also offer insights into developing novel strategies for medical and agricultural pest control
Genomic and karyotypic variation in Drosophila parasitoids (Hymenoptera, Cynipoidea, Figitidae)
Abstract Drosophila melanogaster Meigen, 1830 has served as a model insect for over a century. Sequencing of the 11 additional Drosophila Fallen, 1823 species marks substantial progress in comparative genomics of this genus. By comparison, practically nothing is known about the genome size or genome sequences of parasitic wasps of Drosophila. Here, we present the first comparative analysis of genome size and karyotype structures of Drosophila parasitoids of the Leptopilina Förster, 1869 and Ganaspis Förster, 1869 species. The gametic genome size of Ganaspis xanthopoda (Ashmead, 1896) is larger than those of the three Leptopilina species studied. The genome sizes of all parasitic wasps studied here are also larger than those known for all Drosophila species. Surprisingly, genome sizes of these Drosophila parasitoids exceed the average value known for all previously studied Hymenoptera. The haploid chromosome number of both Leptopilina heterotoma (Thomson, 1862) and Leptopilina victoriae Nordlander, 1980 is ten. A chromosomal fusion appears to have produced a distinct karyotype for Leptopilina boulardi (Barbotin, Carton et Keiner-Pillault, 1979)(n = 9), whose genome size is smaller than that of wasps of the Leptopilina heterotoma clade. Like Leptopilina boulardi, the haploid chromosome number for Ganaspis xanthopoda is also nine. Our studies reveal a positive, but non linear, correlation between the genome size and total chromosome length in Drosophila parasitoids. These Drosophila parasitoids differ widely in their host range, and utilize different infection strategies to overcome host defense. Their comparative genomics, in relation to their exceptionally well-characterized hosts, will prove to be valuable for understanding the molecular basis of the host-parasite arms race and how such mechanisms shape the genetic structures of insectcommunities
Satellite Remote Sensing Applications in Mariculture Activities
During the last two decades the marine fisheries sector in India has undergone considerable change. The
fishing fleet became larger and more energy-intensive, and the catch and trade of marine fishes increased
substantially. Concern arising from the increasing fishing effort and the potential for overexploitation in Indian
waters, led to scientific assessment of the status of several fish stocks. Consequently, attempts were made to
shift from open to regulated access fisheries through Marine Fishing Regulation Acts (MFRAs). However, conflicts
in sharing the limited resources intensified within and with other sectors and this, in turn, had high economic,
social and environmental costs (Vision 2050, CMFRI). Thus, in recent years, the sector recognized the need for
effective management for sustainable fisheries and a healthy marine environment through ecosystem approach
and habitat restoration. Success has been achieved in mariculture, raising hopes of producing a plentiful supply
of fish in future by farming marine fis
Statistics of Shear-Induced Rearrangements in a Two-Dimensional Model Foam
Under steady shear, a foam relaxes stress through intermittent rearrangements of bubbles accompanied by sudden drops in the stored elastic energy. We use a simple model of foam that incorporates both elasticity and dissipation to study the statistics of bubble rearrangements in terms of energy drops, the number of nearest neighbor changes, and the rate of neighbor-switching (T1) events. We do this for a two-dimensional system as a function of system size, shear rate, dissipation mechanism, and gas area fraction. We find that for dry foams, there is a well-defined quasistatic limit at low shear rates where localized rearrangements occur at a constant rate per unit strain, independent of both system size and dissipation mechanism. These results are in good qualitative agreement with experiments on two-dimensional and three-dimensional foams. In contrast, we find for progessively wetter foams that the event size distribution broadens into a power law that is cut off only by system size. This is consistent with criticality at the melting transition
- …