389 research outputs found

    Beyond-the-Standard-Model matrix elements with the gradient flow

    Get PDF
    At the Forschungszentrum Juelich (FZJ) we have started a long-term program that aims to determine beyond-the-Standard-Model (BSM) matrix elements using the gradient flow, and to understand the impact of BSM physics in nucleon and nuclear observables. Using the gradient flow, we propose to calculate the QCD component of key beyond the Standard Model (BSM) matrix elements related to quark and strong theta CP violation and the strange content within the nucleon. The former set of matrix elements impacts our understanding of Electric Dipole Moments (EDMs) of nucleons and nuclei (a key signature of BSM physics), while the latter contributes to elastic recoil of Dark Matter particles off nucleons and nuclei. If successful, these results will lay the foundation for extraction of BSM observables from future low-energy, high-intensity and high-accuracy experimental measurements.Comment: 7 pages, 2 figures, presented at the 32nd International Symposium on Lattice Field Theory (Lattice 2014). Correct version of proceedings. Different wording of few paragraphs and different notation on few formulas. Added 1 referenc

    Expansion coefficient of the pseudo-scalar density using the gradient flow in lattice QCD

    Full text link
    We use the Yang-Mills gradient flow to calculate the pseudo-scalar expansion coefficient cP∗(tf)c_P^*(t_f). This quantity is a key ingredient to obtaining the chiral condensate and strange quark content of the nucleon using the Lattice QCD formulation, which can ultimately determine the spin independent (SI) elastic cross section of dark matter models involving WIMP-nucleon interactions. The goal, using the gradient flow, is to renormalize the chiral condensate and the strange content of the nucleon without a power divergent subtraction. Using Chiral symmetry and the small flow time expansion of the gradient flow, the scalar density at zero flow time can be related to the pseudo-scalar density at non zero flow time. By computing the flow time dependance of the pseudo-scalar density over multiple lattices box sizes, lattice spacings and pion masses, we can obtain the scalar density of the nucleon. Our lattice ensembles are Nf=2+1N_{f}=2+1, PCAC-CS gauge field configurations, varying over mπ≈{410,570,700}m_{\pi}\approx \{410,570,700\}~MeV at a=0.0907a=0.0907~fm, with additional ensembles that vary a≈{0.1095,0.0936,0.0684}a\approx \{0.1095,0.0936,0.0684\} ~fm at mπ≈700m_{\pi} \approx 700~MeV

    Flavour Breaking Effects of Wilson twisted mass fermions

    Get PDF
    We study the flavour breaking effects appearing in the Wilson twisted mass formulation of lattice QCD. In this quenched study, we focus on the mass splitting between the neutral and the charged pion, determining the neutral pion mass with a stochastic noise method to evaluate the disconnected contributions. We find that these disconnected contributions are significant. Using the Osterwalder-Seiler interpretation of the connected piece of the neutral pion correlator, we compute the corresponding neutral pion mass to study with more precision the scaling behaviour of the mass splitting.Comment: 15 pages, 2 figure

    Static quarks with improved statistical precision

    Full text link
    We present a numerical study for different discretisations of the static action, concerning cut-off effects and the growth of statistical errors with Euclidean time. An error reduction by an order of magnitude can be obtained with respect to the Eichten-Hill action, for time separations beyond 1.3 fm, keeping discretization errors small. The best actions lead to a big improvement on the precision of the quark mass Mb and F_Bs in the static approximation.Comment: 3 pages, 4 figures, Lattice2003(heavy

    Plasma sheet structure in the magnetotail: kinetic simulation and comparison with satellite observations

    Get PDF
    We use the results of a three-dimensional kinetic simulation of an Harris current sheet to propose an explanation and to reproduce the ISEE-1/2, Geotail, and Cluster observations of the magnetotail current sheet structure. Current sheet flapping, current density bifurcation, and reconnection are explained as the results of the kink and tearing instabilities, which dominate the current sheet evolution.Comment: Submitted to Geophys. Res. Lett. (2003

    One-loop matching for quark dipole operators in a gradient-flow scheme

    Full text link
    The quark chromoelectric dipole (qCEDM) operator is a CP-violating operator describing, at hadronic energies, beyond-the-standard-model contributions to the electric dipole moment of particles with nonzero spin. In this paper we define renormalized dipole operators in a regularization-independent scheme using the gradient flow, and we perform the matching at one loop in perturbation theory to renormalized operators of the same and lower dimension in the more familiar MS scheme. We also determine the matching coefficients for the quark chromo-magnetic dipole operator (qCMDM), which contributes for example to matrix elements relevant to CP-violating and CP-conserving kaon decays. The calculation provides a basis for future lattice QCD computations of hadronic matrix elements of the qCEDM and qCMDM operators

    Mirax: A Brazilian X-Ray Astronomy Satellite Mission

    Get PDF
    We describe the ``Monitor e Imageador de Raios-X'' (MIRAX), an X-ray astronomy satellite mission proposed by the high energy astrophysics group at the National Institute for Space Research (INPE) in Brazil to the Brazilian Space Agency. MIRAX is an international collaboration that includes, besides INPE, the University of California San Diego, the University of Tuebingen in Germany, the Massachusetts Institute of Technology and the Space Research Organization Netherlands. The payload of MIRAX will consist in two identical hard X-ray cameras (10 -200 keV) and one soft X-ray camera (2-28 keV), both with angular resolution of ~ 5-6 arcmin. The basic objective of MIRAX is to carry out continuous broadband imaging spectroscopy observations of a large source sample (~ 9 months/yr) in the central Galactic plane region. This will allow the detection, localization, possible identification, and spectral/temporal study of the entire history of transient phenomena to be carried out in one single mission. MIRAX will have sensitivities of ~ 5 mCrab/day in the 2-10 keV band (~2 times better than the All Sky Monitor on Rossi X-ray Timing Explorer) and 2.6 mCrab/day in the 10-100 keV band (~40 times better than the Earth Occultation technique of the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory). The MIRAX spacecraft will weigh about 200 kg and is expected to be launched in a low-altitude (~ 600 km) circular equatorial orbit around 2007/2008.Comment: 6 pages, 1 table, 3 figures, presented at 2002 COSPAR meeting in Houston. Submitted to Adv. Space Re

    Towards a precision computation of f_Bs in quenched QCD

    Full text link
    We present a computation of the decay constant f_Bs in quenched QCD. Our strategy is to combine new precise data from the static approximation with an interpolation of the decay constant around the charm quark mass region. This computation is the first step in demonstrating the feasability of a strategy for f_B in full QCD. The continuum limits in the static theory and at finite mass are taken separately and will be further improved.Comment: Lattice2003(heavy), 3 pages, 2 figure
    • …
    corecore