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A R T I C L E I N F O A B S T R A C T

Editor: B. Grinstein The calculation of the neutron electric dipole moment within effective field theories for physics beyond the 
Standard Model requires non-perturbative hadronic matrix elements of effective operators composed of quark 
and gluon fields. In order to use input from lattice computations, these matrix elements must be translated from a 
scheme suitable for lattice QCD to the minimal-subtraction scheme used in the effective-field-theory framework. 
The accuracy goal in the context of the neutron electric dipole moment necessitates at least a one-loop matching 
calculation. Here, we provide the one-loop matching coefficients for the 𝐶𝑃 -odd three-gluon operator between 
two different minimally subtracted ’t Hooft–Veltman schemes and the gradient flow. This completes our program 
to obtain the one-loop gradient-flow matching coefficients for all 𝐶𝑃 -violating and flavor-conserving operators 
in the low-energy effective field theory up to dimension six.

1. Introduction

The baryon asymmetry of the universe calls for 𝐶𝑃 violation beyond 
the Standard Model (SM) of particle physics, which however is tightly 
constrained by the experimental bounds on the neutron electric dipole 
moment (EDM) [1]

|𝑑𝑛| < 1.8 × 10−26 𝑒 cm (90% C.L.) , (1)

as well as on leptonic [2–5] and other hadronic EDMs, see Refs. [6–8]
for recent reviews. Effective field theories (EFTs) are the ideal frame-
work to translate the experimental bounds at low energies into con-
straints on heavy new physics beyond the SM. Between the threshold 
of new physics and the electroweak scale, the effects of new physics 
can be calculated in terms of the SMEFT [9–13], which below the 
electroweak scale is matched to the low-energy effective field theory 
(LEFT) [14–16]. Within the LEFT, the neutron EDM depends on non-
perturbative matrix elements of composite operators. These matrix el-
ements should be provided with a precision of 10 − 25% [8] in order 
not to wash out the constraining power of the low-energy experimen-
tal bound when translating that bound into constraints on the Wilson 

* Corresponding author.
E-mail address: oscar.laracrosas@physik.uzh.ch (Ò.L. Crosas).

1 This operator is already part of the SMEFT operator basis of Ref. [9], but it is often called “Weinberg operator” [27], or gluon chromo-EDM [18,28].

coefficients at the scale of heavy new physics. Ideally, lattice QCD 
should be used to determine these matrix elements, which, however, 
requires a matching calculation between a non-perturbative renormal-
ization scheme and minimal subtraction (MS) used in the EFTs. These 
matching calculations are partially available for traditional momentum-
subtraction schemes [17,18], but on the lattice side these schemes come 
with the complication of large operator bases and power divergences 
that interfere with the continuum limit. The gradient flow [19–21] (see 
Ref. [22] for a recent review) is a more modern scheme that promises 
to give a handle on these difficulties [23,24].

Lattice-QCD computations of the matrix elements of flowed opera-
tors can be converted into the required matrix elements of MS operators 
by using a perturbative matching at a renormalization scale that is 
accessible on the lattice and where perturbation theory still works suf-
ficiently well.

The perturbative matching equations between the gradient flow and 
the MS scheme have recently been worked out at one loop for all oper-
ators contributing to the neutron EDM up to dimension six [23,25,26], 
with the exception of the 𝐶𝑃 -odd three-gluon operator (✚✚CP-3GO).1 The 
matching of this operator is the most involved calculation, due to the 
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number of operators that can mix with the ✚✚CP-3GO [18] and due to 
the complexity of the gluonic diagrams. In this letter, we present the 
matching for the ✚✚CP-3GO at one loop, which completes the one-loop 
gradient-flow matching up to dimension six for the flavor-conserving 
and 𝐶𝑃 -violating sector of the LEFT.

2. Gradient flow

The gradient flow [19–21] extends Euclidean QCD

QCD =
1

4𝑔2
0

𝐺𝑎
𝜇𝜈𝐺

𝑎
𝜇𝜈 + 𝑞( ∕𝐷 +)𝑞 , 𝐷𝜇 = 𝜕𝜇 + 𝑡𝑎𝐺𝑎

𝜇 (2)

to 𝐷 + 1 dimensions by introducing an artificial dimension called flow 
time 𝑡, with mass dimension [𝑡] =−2. In the following, we use the same 
conventions as Refs. [25,26]. The flowed fields satisfy the flow equa-
tions

𝜕𝑡𝐵𝜇 =𝐷𝜈𝐺𝜈𝜇 + 𝛼0𝐷𝜇𝜕𝜈𝐵𝜈 ,

𝜕𝑡𝜒 =𝐷𝜇𝐷𝜇𝜒 − 𝛼0(𝜕𝜇𝐵𝜇)𝜒 ,

𝜕𝑡�̄� = �̄� ⃖⃖�⃖�𝜇
⃖⃖�⃖�𝜇 + 𝛼0�̄�(𝜕𝜇𝐵𝜇) (3)

together with the initial conditions

𝐵𝜇(𝑥, 𝑡 = 0) =𝐺𝜇(𝑥) ,

𝜒(𝑥, 𝑡 = 0) = 𝑞(𝑥) , �̄�(𝑥, 𝑡 = 0) = 𝑞(𝑥) , (4)

i.e., the theory is defined as QCD at the boundary 𝑡 = 0. The flow equa-
tions can be extended to include an external electromagnetic field in 
order to preserve 𝑈 (1)em invariance [26]. In the present case, up to 
one loop there is no matching to physical operators containing photons, 
hence we disregard the inclusion of an external photon field.

The differential equations (3) can be rewritten as integral equations 
and solved perturbatively in an expansion in the gauge coupling [20]. 
This expansion is conveniently expressed in terms of Feynman diagrams 
with QCD Feynman rules extended by flow lines and flow vertices.

The gradient flow acts as a UV regulator: the flowed theory is auto-
matically finite, apart from the renormalization of the gauge coupling, 
quark masses, and quark fields. In particular, flowed composite opera-
tors are renormalized only multiplicatively by factors of the coupling, 
mass, and quark-field renormalizations.

When implemented non-perturbatively on the lattice, the gradient 
flow converts power divergences into 1∕𝑡𝑛 singularities, disentangling 
them from the continuum limit 𝑎 → 0, which can be taken for any fixed 
flow time 𝑡.

3. Operator basis

We largely follow the ’t Hooft–Veltman (HV) [29,30] scheme defi-
nitions of Ref. [18], adapting them in a minimal way to the Euclidean 
conventions of Refs. [25,26] and rescaling the gauge field as in Eq. (2). 
In the HV scheme, the 𝐷-dimensional metric tensor 𝛿𝜇𝜈 is split into a 
four-dimensional part 𝛿𝜇𝜈 and a part 𝛿𝜇𝜈 projecting to −2𝜀 dimensions,

𝛿𝜇𝜈 = 𝛿𝜇𝜈 + 𝛿𝜇𝜈 , (5)

with

𝛿𝜇𝜈𝛿𝜇𝜈 =𝐷 = 4 − 2𝜀 , 𝛿𝜇𝜈𝛿𝜇𝜈 = 4 , 𝛿𝜇𝜈𝛿𝜇𝜈 = −2𝜀 . (6)

Projections of Dirac matrices, vectors, and tensors to the different sub-
spaces are defined by contractions with the respective metric tensors, 
e.g.,

�̄�𝜇 = 𝛿𝜇𝜈𝛾𝜈 , �̂�𝜇 = 𝛿𝜇𝜈𝛾𝜈 . (7)

The Levi-Civita symbol 𝜖𝜇𝜈𝜆𝜎 is a purely four-dimensional object and we 
use the convention

𝛾5 = 𝛾1𝛾2𝛾3𝛾4 =
1

4!
𝜖𝜇𝜈𝜆𝜎𝛾𝜇𝛾𝜈𝛾𝜆𝛾𝜎 , 𝜖1234 = +1 . (8)

We define the renormalized flowed ✚✚CP-3GO as

𝑅

𝐺
(𝑥, 𝑡) ∶=

1

𝑔2
Tr[𝐺𝜇𝜈𝐺𝜈𝜆𝐺𝜆𝜇] (9)

with renormalized coupling 𝑔 and the dual field-strength tensor 𝐺𝜇𝜈 ∶=
1

2
𝜀𝜇𝜈𝜌𝜎𝐺𝜌𝜎 defined in terms of flowed gauge fields.2 An operator-
product expansion at short flow times (SFTE) expresses it in terms of 
renormalized MS operators

𝑅

𝐺
(𝑥, 𝑡) =

∑

𝑖

𝐶𝑖(𝑡, 𝜇)
MS
𝑖 (𝑥,𝜇) +

∑

𝑖

𝐶𝑖
(𝑡, 𝜇)MS

𝑖 (𝑥,𝜇)

+
∑

𝑖

𝐶𝑖
(𝑡, 𝜇)MS

𝑖 (𝑥,𝜇) , (10)

where 𝑖 denote physical operators (also called class-I operators), 
𝑖 nuisance operators (or class-II operators), and 𝑖 evanescent ones, 
which vanish in four space-time dimensions. The complete operator 
basis has been derived in Ref. [18]. Again, we minimally adapt the 
operator definitions to our conventions and we only include operators 
relevant at one loop. The physical operators 𝑖 are defined as

𝜃 =
1

𝑔2
0

Tr[𝐺𝜇𝜈𝐺𝜇𝜈 ] ,

𝐺 =
1

𝑔2
0

Tr[𝐺𝜇𝜈𝐺𝜈𝜆𝐺𝜆𝜇] ,

𝐶𝐸 = (𝑞�̃�𝜇𝜈𝑡𝑎𝑞)𝐺𝑎
𝜇𝜈 ,

𝜕𝐺 =
1

𝑔2
0

𝜕𝜈Tr[(𝐷𝜇𝐺𝜇𝜆)𝐺𝜈𝜆] ,

□𝜃 =
1

𝑔2
0

□Tr[𝐺𝜇𝜈𝐺𝜇𝜈] , (11)

in terms of bare unflowed fields, bare coupling 𝑔0, and with �̃�𝜇𝜈 =

−
1

2
𝜖𝜇𝜈𝛼𝛽𝜎𝛼𝛽 . The nuisance operators 𝑖 can be split into two classes [32–

36]. The gauge-invariant class-IIa operators vanish by the classical 
equations of motion (EOM):

1 =
(
𝑞𝐸 �̃�𝜇𝜈 𝑡

𝑎𝑞 + 𝑞�̃�𝜇𝜈 𝑡
𝑎𝑞𝐸

)
𝐺𝑎
𝜇𝜈 ,

3 = 𝑞𝐸�̃�𝜇𝐷𝜇𝑞 + 𝑞⃖⃖�⃖�𝜇 �̃�𝜇𝑞𝐸 ,

6 = 𝜕𝜇

(
𝑞𝐸𝛾5𝐷𝜇𝑞 − 𝑞⃖⃖�⃖�𝜇𝛾5𝑞𝐸

)
,

7 = 𝜕𝜇

(
𝑞𝐸 �̃�𝜇𝜈𝐷𝜈𝑞 − 𝑞⃖⃖�⃖�𝜈 �̃�𝜇𝜈𝑞𝐸

)
,

8 =
2

𝑔2
0

𝜕𝜆

(
𝐺𝑎
𝜆𝜎

(
𝐷𝜌𝐺

𝑎
𝜌𝜎 − 𝑔2

0
𝑞𝑡𝑎𝛾𝜎𝑞

))
,

9 = 𝜕𝜇
(
𝑞𝐸�̃�𝜇𝑞 + 𝑞�̃�𝜇𝑞𝐸

)
, (12)

where the quark EOM fields are

𝑞𝐸 = ( ∕𝐷 +)𝑞 , 𝑞𝐸 = 𝑞(−⃖⃖∕⃖𝐷 +) (13)

and �̃�𝜇 = �̄�𝜇𝛾5 =
1

3!
𝜖𝜇𝛼𝛽𝛾𝛾𝛼𝛾𝛽𝛾𝛾 . Class IIb consists of gauge-variant, but 

BRST-exact operators:

11 =
2

𝑔2
0

𝐺𝑎
𝜆𝜎

(
𝜕𝜆

(
𝐷𝜌𝐺

𝑎
𝜌𝜎 − 𝑔2

0
𝑞𝑡𝑎𝛾𝜎𝑞 + 𝑔2

0
𝑓 𝑎𝑏𝑐(𝜕𝜎𝑐

𝑏)𝑐𝑐
))

,

12 =
(
𝑞𝐸𝛾5𝑞 + 𝑞𝛾5𝑞𝐸

)
𝐺𝑎
𝜇𝐺

𝑎
𝜇 ,

13 =
(
𝑞𝐸𝛾5𝑡

𝑎𝑞 + 𝑞𝛾5𝑡
𝑎𝑞𝐸

)
𝐺𝑏
𝜇𝐺

𝑐
𝜇𝑑

𝑎𝑏𝑐 ,

2 We take the renormalized gauge coupling 𝑔 in the MS scheme. In lattice 
simulations, an alternative gauge coupling definition is employed. This scheme 
change for the coupling can be easily implemented in the one-loop ✚✚CP-3GO
self-matching [19,31], while at the order we work in this paper, the distinction 
holds no significance for the matching on the remaining operators.
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14 =
(
𝑞𝐸𝛾5𝑡

𝑎𝑞 − 𝑞𝛾5𝑡
𝑎𝑞𝐸

)
𝜕𝜇𝐺

𝑎
𝜇 ,

15 =
(
𝑞𝐸𝛾5𝑡

𝑎𝐷𝜇𝑞 − 𝑞⃖⃖�⃖�𝜇𝛾5𝑡
𝑎𝑞𝐸

)
𝐺𝑎
𝜇 ,

16 =
(
𝑞𝐸 �̃�𝜇𝜈 𝑡

𝑎𝑞 + 𝑞�̃�𝜇𝜈 𝑡
𝑎𝑞𝐸

)
𝜕𝜇𝐺

𝑎
𝜈 ,

17 =
(
𝑞𝐸�̃�𝜇𝑡

𝑎𝑞 − 𝑞�̃�𝜇𝑡
𝑎𝑞𝐸

)
𝐺𝑎
𝜇 ,

18 =
𝜖𝜇𝜈𝜆𝜎

𝑔2
0

𝜕𝜆

((
𝐷𝜌𝐺

𝑎
𝜌𝜎 − 𝑔2

0
𝑞𝑡𝑎𝛾𝜎𝑞 + 𝑔2

0
𝑓 𝑎𝑏𝑐(𝜕𝜎𝑐

𝑏)𝑐𝑐
)
𝜕𝜇𝐺

𝑎
𝜈

)
,

19 = 𝜕𝜇

((
𝑞𝐸𝛾5𝑡

𝑎𝑞 − 𝑞𝛾5𝑡
𝑎𝑞𝐸

)
𝐺𝑎
𝜇

)
,

20 = 𝜕𝜇
((
𝑞𝐸 �̃�𝜇𝜈 𝑡

𝑎𝑞 + 𝑞�̃�𝜇𝜈 𝑡
𝑎𝑞𝐸

)
𝐺𝑎
𝜈

)
, (14)

which could be dropped from the operator basis when using the 
background-field method [37–39].

Finally, the definition of the set of evanescent operators 𝑖 affects 
the matching coefficients of the physical operators and is part of the 
scheme.3 We make use of the evanescent scheme of Refs. [18,26]: the 
only evanescent bosonic operator is a total-derivative operator due to 
the Schouten identity

𝑆 =
1

𝑔2
0

(
□Tr[𝐺𝜇𝜈𝐺𝜇𝜈] − 4𝜕𝛼𝜕𝜇Tr[𝐺𝛼𝜈𝐺𝜇𝜈]

)
, (15)

whereas the fermionic evanescent operators are built from quark bilin-
ears containing evanescent Dirac matrices,


(𝑛,𝑚)
𝑖

= 𝑞𝛾5�̂�𝜇1 … �̂�𝜇𝑛𝛾𝜈1 … 𝛾𝜈𝑚𝑂
𝐹 ,𝑖
𝜇1…𝜇𝑛𝜈1…𝜈𝑚

𝑞 , (16)

where 𝑂𝐹 ,𝑖
𝜇1…𝜇𝑛𝜈1…𝜈𝑚

consists of gauge fields and derivatives in 𝐷 dimen-
sions. Due to the presence of explicitly evanescent indices on fields or 
derivatives, the projection onto the non-evanescent sector is efficiently 
done by keeping momenta and polarization vectors of external particles 
in 𝐷 = 4 space-time dimensions.

4. An alternative scheme

The choice of MS renormalization scheme in the EFT affects the 
matching results. Although these scheme dependences need to drop out 
in relations between observables, certain scheme choices help to sim-
plify the calculation. The scheme definitions of Ref. [18] are well suited 
for the present calculations in the 𝐶𝑃 -odd and flavor-conserving sector 
up to dimension six with only single operator insertions: the calcula-
tion in the HV scheme can be performed in 𝐷 dimensions, with the 
only explicit projection to 4 dimensions arising from the Levi-Civita 
symbol. In a more general context, these simplifications do not oc-
cur. Therefore, we also consider an alternative scheme choice, in which 
all non-evanescent higher-dimension operators are strictly kept in four 
space-time dimensions [42], i.e., summed Lorentz indices in all opera-
tors only run over 𝜇 = 1, … , 4. We write the SFTE as

𝑅

𝐺
(𝑥, 𝑡) =

∑

𝑖

�̄�𝑖(𝑡, 𝜇)̄
MS
𝑖 (𝑥,𝜇) +

∑

𝑖

�̄�𝑖
(𝑡, 𝜇)̄MS

𝑖 (𝑥,𝜇)

+
∑

𝑖

�̄�𝑖
(𝑡, 𝜇)MS

𝑖 (𝑥,𝜇) . (17)

The last sum extends over evanescent bosonic operators that are not 
generated in the scheme of Sect. 3: these bosonic evanescent operators 
can be written in terms of evanescent derivatives or gauge fields and 
the projection to the non-evanescent sector is again most easily done by 
keeping external momenta and polarization vectors in four space-time 
dimensions. Therefore, the projection onto the non-evanescent sector in 
terms of bare operators can be done in the same way in both schemes. 
The implications of the operator renormalization will be discussed in 
Sect. 7.

3 In a scheme that avoids a tree-level matching contribution to evanescent 
operators, their renormalization [40,41] affects the matching coefficients of 
physical operators only at the two-loop level.

Fig. 1. Feynman diagrams for the one-loop matching of the ✚✚CP-3GO to the QCD 
theta term. A filled blob denotes the insertion of the operator and an empty blob 
denotes a flow-time vertex. Crossed diagrams are not shown explicitly. The first 
and last diagrams vanish identically.

5. Calculation

The matching coefficients for the physical gluonic operators in the 
SFTE can be extracted from the gluon two- and three-point functions. In 
Figs. 1 and 2, we show the list of Feynman diagrams, omitting the ones 
related by crossing symmetry. The matching to the quark chromo-EDM 
operator only requires the computation of a single diagram shown on 
the left of Fig. 3. The determination of the full set of coefficients, includ-
ing the coefficients of nuisance operators, also requires the calculation 
of the quark-antiquark-gluon-gluon four-point function, with diagrams 
shown in Fig. 4. For the extraction of the matching to the QCD theta 
term as well as to the remaining total-derivative operators, we insert 
momentum into the operator. Although only the matching coefficients 
of physical operators are of primary interest, we extract the complete 
set of coefficients in an off-shell matching: this provides an important 
consistency check of both our calculation and the completeness of the 
operator basis constructed in Ref. [18]. The ghost diagram shown on 
the right of Fig. 3 serves as a further cross check.

We compared multiple independent implementations of the entire 
loop calculation and we computed the matching for generic gauge 
parameters 𝜉 and 𝛼0, observing cancellation of the gauge-parameter 
dependence in the final results. Keeping generic gauge parameters in-
creases the computational cost significantly and requires an efficient 
organization of the calculation, e.g., by making use of crossing sym-
metry in order to avoid that intermediate results become prohibitively 
large. To this end, we implemented our own routines in Mathematica.

Further, we checked that the 1∕𝜀 poles are canceled by the coun-
terterms that can be extracted from the known renormalization-group 
equations [15,28,43–45].

The matching calculation is greatly simplified by using the method 
of regions [46] with the inverse of the short flow time Λ2 = 1∕𝑡 as the 
only hard scale.

6. Results

The matching of the ✚✚CP-3GO onto the theta term is power divergent,

𝐶𝜃 = −
9𝛼𝑠𝐶𝐴

16𝜋

1

𝑡
, (18)

hence it necessitates a non-perturbative subtraction [24,25,47]. This 
result supersedes the original finding of Ref. [23]. For the coefficients 
of the dimension-six operators, we obtain the following matching:

𝐶𝐺 = 1 +
𝛼𝑠𝐶𝐴

12𝜋
+

3𝛼𝑠𝐶𝐴 log(8𝜋𝜇2𝑡)

2𝜋
,

𝐶𝐶𝐸 =
31𝑖 𝛼𝑠𝐶𝐴

192𝜋
+

3𝑖 𝛼𝑠𝐶𝐴 log(8𝜋𝜇2𝑡)

32𝜋
,

𝐶𝜕𝐺 = −
179𝛼𝑠𝐶𝐴

96𝜋
,

𝐶□𝜃 = 0 . (19)

The matching coefficients of the nuisance operators are given by

𝐶1
= −

5𝑖𝛼𝑠𝐶𝐴

192𝜋
,

𝐶8
= −

11𝛼𝑠𝐶𝐴

384𝜋
−

3𝛼𝑠𝐶𝐴 log(8𝜋𝜇2𝑡)

64𝜋
,
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Fig. 2. Feynman diagrams for the one-loop matching of the ✚✚CP-3GO to itself. Including crossed versions that are not listed explicitly, there are in total 56 diagrams.

Fig. 3. Left: Feynman diagram for the one-loop matching of the ✚✚CP-3GO to the 
qCEDM operator. Right: Feynman diagram contributing to the ghost-antighost-
gluon three-point function.

Fig. 4. Feynman diagrams for the one-loop matching of the ✚✚CP-3GO to the 
nuisance operators. Diagrams with crossed gluons or reversed quark flow are 
not shown explicitly.

𝐶11
= −

7𝛼𝑠𝐶𝐴

128𝜋
−

3𝛼𝑠𝐶𝐴 log(8𝜋𝜇2𝑡)

64𝜋
(20)

and all other coefficients vanish at one loop. The Schouten-evanescent 
operator does not get a contribution either, 𝐶𝑆

= 0. We do not list the 
coefficients of fermionic evanescent operators, as we simply project to 
the non-evanescent sector by keeping momenta and polarization vectors 
in four dimensions.

In the scheme where non-evanescent higher-dimension operators are 
kept in four space-time dimensions, we find the same power divergence, 
but slightly different results for the finite pieces of the matching coeffi-
cients of the dimension-six operators:

�̄�𝐺 = 1 +
3𝛼𝑠𝐶𝐴 log(8𝜋𝜇2𝑡)

2𝜋
,

�̄�𝐶𝐸 =
11𝑖 𝛼𝑠𝐶𝐴

64𝜋
+

3𝑖 𝛼𝑠𝐶𝐴 log(8𝜋𝜇2𝑡)

32𝜋
,

�̄�𝜕𝐺 = −
61𝛼𝑠𝐶𝐴

32𝜋
,

�̄�□𝜃 = 0 ,

�̄�1
= −

𝑖𝛼𝑠𝐶𝐴

64𝜋
,

�̄�8
= −

7𝛼𝑠𝐶𝐴

128𝜋
−

3𝛼𝑠𝐶𝐴 log(8𝜋𝜇2𝑡)

64𝜋
,

�̄�11
= −

9𝛼𝑠𝐶𝐴

128𝜋
−

3𝛼𝑠𝐶𝐴 log(8𝜋𝜇2𝑡)

64𝜋
(21)

and vanishing one-loop coefficients of the remaining nuisance opera-
tors.

7. Scheme dependence and evanescent operators

The calculation in the scheme of Sect. 4 is most easily done by 
replacing the flowed operator on the LHS of Eq. (17) by the flowed 
operator in four space-time dimensions,

̄𝑅

𝐺
(𝑥, 𝑡) ∶=

1

𝑔2
Tr[𝐺𝜇𝜈𝐺𝜈𝜆𝐺𝜆𝜇] . (22)

In this way, one can also avoid a tree-level matching contribution to 
evanescent operators in this scheme. However, since the flowed oper-
ator is UV finite, this choice cannot affect the matching coefficients of 
non-evanescent operators, �̄�𝑖 and �̄�𝑖

, which we demonstrate explicitly 
in the following.

If we perform the matching using the original flowed operator (9), 
one might expect to find exactly the same matching coefficients of non-
evanescent operators as in the first scheme, since the operators in the 
second scheme only differ by evanescent contributions. However, this 
argument neglects the renormalization of the operators. Indeed, when 
using the flowed ✚✚CP-3GO (9) in the matching (17), we already get a 
tree-level contribution to the evanescent operator

𝐺 =
1

𝑔2
0

Tr[𝐺𝜇�̂�𝐺�̂�𝜆𝐺𝜆𝜇] =𝐺 − ̄𝐺 , (23)

with matching coefficient �̄� tree

𝐺

= 1. The usual way to renormalize 

evanescent operators is not by pure subtraction of 1∕𝜀 poles, but one 
should rather include finite physical counterterms that compensate the 
finite non-evanescent contributions arising from the insertion of the 
evanescent operators into loop diagrams [40,41], imposing4

⟨MS
𝑖 ⟩|||phys = 0 . (24)

Relating renormalized to bare operators by

4 Despite the finite renormalization, we denote the renormalized evanescent 
operators by MS

𝑖 , since this scheme is indeed minimal [40]. See also Refs. [16,
48,49] for recent discussions of evanescent operators in matching calculations.
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MS
𝑖 = (𝛿𝑖𝑗 +Δ

𝑖𝑗 )𝑗 +Δ
𝑖𝑗 𝑗 +Δ

𝑖𝑗 𝑗 , (25)

this implies at one loop

0 = ⟨𝑖⟩
|||
1𝐿

phys
+Δ

𝑖𝑗 ⟨𝑗⟩
|||
tree

phys
+Δ

𝑖𝑗 ⟨𝑗⟩
|||
tree

phys
. (26)

An explicit calculation of the insertions of the evanescent operator (23)
leads to the finite renormalizations

Δ

𝐺,𝐺
=
𝛼𝑠𝐶𝐴

12𝜋
, Δ

𝐺,𝐶𝐸
= −

𝑖𝛼𝑠𝐶𝐴

96𝜋
, Δ

𝐺,𝜕𝐺
=
𝛼𝑠𝐶𝐴

24𝜋
,

Δ

𝐺,1
= −

𝑖𝛼𝑠𝐶𝐴

96𝜋
, Δ

𝐺,8
=

5𝛼𝑠𝐶𝐴

192𝜋
, Δ

𝐺,11
=
𝛼𝑠𝐶𝐴

64𝜋
. (27)

Writing the matching coefficients as �̄�𝑖 = �̄� tree
𝑖

+ �̄�1𝐿
𝑖
, expanding the 

SFTE (17) in terms of bare operators, and applying the method of re-
gions gives at one loop

⟨𝑅

𝐺
(𝑡)⟩|||

1𝐿

hard,finite
=
(
�̄�1𝐿
𝑖 +Δ

𝐺,𝑖

)
⟨𝑖⟩

|||
tree

+ �̄�1𝐿
𝑖

⟨𝑖⟩
|||
tree

, (28)

where for simplicity we suppressed field-renormalization factors and 
included nuisance operators in the sum over physical operators 𝑖. 
Instead, if we write the SFTE for the flowed ✚✚CP-3GO in four dimen-
sions (22), there is no tree-level matching contribution to evanescents, 
in particular �̄� tree


𝐺

′ = 0, and the matching equation reads

⟨̄𝑅

𝐺
(𝑡)⟩|||

1𝐿

hard,finite
= �̄�1𝐿

𝑖 ⟨𝑖⟩
|||
tree

+ �̄�1𝐿
𝑖

′⟨𝑖⟩
|||
tree

. (29)

Therefore, while the matching coefficients of the evanescent operators 
do change, the choice of taking either 𝑅

𝐺
(𝑥, 𝑡) or ̄𝑅

𝐺
(𝑥, 𝑡) as the flowed 

operator indeed leads to the same matching coefficients of physical 
(and nuisance) operators, since the finite renormalizations (27) exactly 
reproduce the difference in the coefficient of physical structures be-
tween the insertions of 𝑅

𝐺
(𝑥, 𝑡) and ̄𝑅

𝐺
(𝑥, 𝑡). The calculation therefore 

confirms the expectation that the matching coefficients depend on the 
dimensional scheme for the MS operators (as illustrated by the differ-
ence between the matching coefficients 𝐶𝑖 and �̄�𝑖), but the dimensional 
scheme for the flowed operators does not affect the matching coeffi-
cients of the non-evanescent sector, since the operators are already 
regulated by the flow. Importantly, this only works if the evanescent op-
erators are correctly renormalized, i.e., by imposing the condition (24), 
which separates the physical from the evanescent sectors.

8. Conclusions

We have presented the results for the one-loop matching of the 
𝐶𝑃 -violating three-gluon operator between the gradient flow and MS 
schemes. These results complete the one-loop matching of the 𝐶𝑃 -
violating and flavor-conserving sector of the LEFT to the gradient flow, 
which is the sector of the theory relevant for the neutron EDM. We 
have provided the results for two different renormalization schemes on 
the MS side, which are both based on the ’t Hooft–Veltman scheme 
but use a different operator basis. We have checked that the matching 
results are independent of the dimensional scheme used to define the 
flowed operator. This requires a correct renormalization of evanescent 
operators, following the scheme introduced in Refs. [40,41]. Interest-
ingly, in the scheme where physical effective operators are kept in four 
space-time dimensions, the one-loop contribution to the self-matching 
of the ✚✚CP-3GO is purely logarithmic and vanishes at the matching scale 
𝜇 = (8𝜋𝑡)−1∕2. In the scheme of Ref. [18], we do find a finite one-loop 
self-matching contribution. The perturbative uncertainty of the one-
loop gradient-flow matching has been studied previously [25,26]: in 
the context of the neutron EDM, the target of a 10 − 25% uncertainty 
on hadronic matrix elements [8] as well as the experimental prospects 
for improved sensitivities [50–54] provide motivation to extend these 
calculations in the future to the two-loop level [55–57].
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