925 research outputs found

    Enhancement of the upper critical field in codoped iron-arsenic high-temperature superconductors

    Full text link
    We present the first study of codoped iron-arsenide superconductors of the 122 family (Sr/Ba)_(1-x)K_xFe_(2-y)Co_yAs_2 with the purpose to increase the upper critical field H_c2 compared to single doped (Sr/Ba)Fe_2As_2 materials. H_c2 was investigated by measuring the magnetoresistance in high pulsed magnetic fields up to 64 T. We find, that H_c2 extrapolated to T = 0 is indeed enhanced significantly to ~ 90 T for polycrystalline samples of Ba_0.55K_0.45Fe_1.95Co_0.05As_2 compared to ~75 T for Ba_0.55K_0.45Fe_2As_2 and BaFe_1.8Co_0.2As_2 single crystals. Codoping thus is a promising way for the systematic optimization of iron-arsenic based superconductors for magnetic-field and high-current applications.Comment: 7 pages, 5 figures, submitted to Journal of Applied Physic

    Competition of local-moment ferromagnetism and superconductivity in Co-substituted EuFe2As2

    Full text link
    In contrast to SrFe2As2, where only the iron possesses a magnetic moment, in EuFe2As2 an additional large, local magnetic moment is carried by Eu2+. Like SrFe2As2, EuFe2As2 exhibits a spin-density wave transition at high temperatures, but in addition the magnetic moments of the Eu2+ order at around 20 K. The interplay of pressure-induced superconductivity and the Eu2+ order leads to a behavior which is reminiscent of re-entrant superconductivity as it was observed, for example, in the ternary Chevrel phases or in the rare-earth nickel borocarbides. Here, we study the delicate interplay of the ordering of the Eu2+ moments and superconductivity in EuFe1.9Co0.1As2, where application of external pressure makes it possible to sensitively tune the ratio of the magnetic (T_C) and the superconducting (T_{c,onset}) critical temperatures. We find that superconductivity disappears once T_C > T_{c,onset}.Comment: 4 pages, 4 figures, submitted to the proceedings of SCES201

    Microscopic magnetic modeling for the SS=1/2 alternating chain compounds Na3_3Cu2_2SbO6_6 and Na2_2Cu2_2TeO6_6

    Full text link
    The spin-1/2 alternating Heisenberg chain system Na3_3Cu2_2SbO6_6 features two relevant exchange couplings: J1aJ_{1a} within the structural Cu2_2O6_6 dimers and J1bJ_{1b} between the dimers. Motivated by the controversially discussed nature of J1aJ_{1a}, we perform extensive density-functional-theory (DFT) calculations, including DFT+UU and hybrid functionals. Fits to the experimental magnetic susceptibility using high-temperature series expansions and quantum Monte Carlo simulations yield the optimal parameters J1aJ_{1a} = −-217 K and J1bJ_{1b} = 174 K with the alternation ratio α=J1a/J1b≃\alpha = J_{1a}/J_{1b} \simeq −-1.25. For the closely related system Na2_2Cu2_2TeO6_6, DFT yields substantially enhanced J1bJ_{1b}, but weaker J1aJ_{1a}. The comparative analysis renders the buckling of the chains as the key parameter altering the magnetic coupling regime. Numerical simulation of the dispersion relations of the alternating chain model clarify why both antiferromagnetic and ferrromagnetic J1aJ_{1a} can reproduce the experimental magnetic susceptibility data.Comment: published version: 11 pages, 8 figures, 5 tables + Supplemental materia

    Superconductivity in SrFe_(2-x)Co_xAs_2: Internal Doping of the Iron Arsenide Layers

    Full text link
    In the electron doped compounds SrFe_(2-x)Co_xAs_2 superconductivity with T_c up to 20 K is observed for 0.2 < x < 0.4. Results of structure determination, magnetic susceptibility, electrical resistivity, and specific heat are reported. The observation of bulk superconductivity in all thermodynamic properties -- despite strong disorder in the Fe-As layer -- favors an itinerant picture in contrast to the cuprates and renders a p- or d-wave scenario unlikely. DFT calculations find that the substitution of Fe by Co (x > 0.3) leads to the suppression of the magnetic ordering present in SrFe_2As_2 due to a rigid down-shift of the Fe-3d_(x^2-y^2) related band edge in the density of states.Comment: 5 pages, 3 figure

    Electronic structure and magnetic properties of the spin-1/2 Heisenberg system CuSe2O5

    Get PDF
    A microscopic magnetic model for the spin-1/2 Heisenberg chain compound CuSe2O5 is developed based on the results of a joint experimental and theoretical study. Magnetic susceptibility and specific heat data give evidence for quasi-1D magnetism with leading antiferromagnetic (AFM) couplings and an AFM ordering temperature of 17 K. For microscopic insight, full-potential DFT calculations within the local density approximation (LDA) were performed. Using the resulting band structure, a consistent set of transfer integrals for an effective one-band tight-binding model was obtained. Electronic correlations were treated on a mean-field level starting from LDA (LSDA+U method) and on a model level (Hubbard model). In excellent agreement of experiment and theory, we find that only two couplings in CuSe2O5 are relevant: the nearest-neighbour intra-chain interaction of 165 K and a non-frustrated inter-chain coupling of 20 K. From a comparison with structurally related systems (Sr2Cu(PO4)2, Bi2CuO4), general implications for a magnetic ordering in presence of inter-chain frustration are made.Comment: 20 pages, 8 figures, 3 table

    Large Noncollinearity and Spin Reorientation in the Novel Mn2RhSn Heusler Magnet

    Full text link
    Noncollinear magnets provide essential ingredients for the next generation memory technology. It is a new prospect for the Heusler materials, already well known due to the diverse range of other fundamental characteristics. Here, we present a combined experimental and theoretical study of novel noncollinear tetragonal Mn2RhSn Heusler material exhibiting unusually strong canting of its magnetic sublattices. It undergoes a spin-reorientation transition, induced by a temperature change and suppressed by an external magnetic field. Because of the presence of Dzyaloshinskii-Moriya exchange and magnetic anisotropy, Mn2RhSn is suggested to be a promising candidate for realizing the Skyrmion state in the Heusler family

    Growth dynamics of a Bose-Einstein condensate in a dimple trap without cooling

    Get PDF
    We study the formation of a Bose-Einstein condensate in a cigar-shaped three-dimensional harmonic trap, induced by the controlled addition of an attractive "dimple" potential along the weak axis. In this manner we are able to induce condensation without cooling due to a localized increase in the phase space density. We perform a quantitative analysis of the thermodynamic transformation in both the sudden and adiabatic regimes for a range of dimple widths and depths. We find good agreement with equilibrium calculations based on self-consistent semiclassical Hartree-Fock theory describing the condensate and thermal cloud. We observe there is an optimal dimple depth that results in a maximum in the condensate fraction. We also study the non-equilibrium dynamics of condensate formation in the sudden turn-on regime, finding good agreement for the observed time dependence of the condensate fraction with calculations based on quantum kinetic theory.Comment: v1: 9 pages, 7 figures, submitted to Phys. Rev. A; v2: 10 pages, 8 figures, fixed typos, added references, additional details on experimental procedure, values of phase-space density, new figure and discussion on effects of three-body loss in Appendix B (replaced with published version

    Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms

    Full text link
    We demonstrate a novel experimental arrangement which rotates a 2D optical lattice at frequencies up to several kilohertz. Ultracold atoms in such a rotating lattice can be used for the direct quantum simulation of strongly correlated systems under large effective magnetic fields, allowing investigation of phenomena such as the fractional quantum Hall effect. Our arrangement also allows the periodicity of a 2D optical lattice to be varied dynamically, producing a 2D accordion lattice.Comment: 7 pages, 5 figures, final versio

    High spin polarization in the ferromagnetic filled skutterudites KFe4Sb12 and NaFe4Sb12

    Full text link
    The spin polarization of ferromagnetic alkali-metal iron antimonides KFe4Sb12 and NaFe4Sb12 is studied by point-contact Andreev reflection using superconducting Nb and Pb tips. From these measurements an intrinsic transport spin polarization Pt of 67% and 60% for the K and Na compound, respectively, is inferred which establishes these materials as a new class of highly spin polarized ferromagnets. The results are in accord with band structure calculations within the local spin density approximation (LSDA) that predict nearly 100% spin polarization in the density of states. We discuss the impact of calculated Fermi velocities and spin fluctuations on Pt.Comment: Pdf file with fi
    • …
    corecore