766 research outputs found
Trapping of Bose-Einstein condensates in a three-dimensional dark focus generated by conical refraction
We present a novel type of three-dimensional dark focus optical trapping
potential for ultra-cold atoms and Bose-Einstein condensates. This 'optical
bottle' is created with blue-detuned laser light exploiting the phenomenon of
conical refraction occurring in biaxial crystals. We present experiments on
confining a Rb87 Bose-Einstein condensate in this potential and derive the
trapping frequencies and potential barriers under the harmonic approximation
and the conical refraction theory
Modelling information routing with noninterference
To achieve the highest levels of assurance, MILS architectures need to be formally analysed. A key challenge is to reason about the interaction between the software applications running on top of MILS core components, such as the separation kernel. In this paper, we extend Rushby's model of noninterference with explicit information units and domain programs. These extensions enable the reasoning at an abstract level about systems built on top of noninterference. As an illustration of our approach, we formally model and analyse an example inspired by the GWV Firewall. <br/
Collective Quartics and Dangerous Singlets in Little Higgs
Any extension of the standard model that aims to describe TeV-scale physics
without fine-tuning must have a radiatively-stable Higgs potential. In little
Higgs theories, radiative stability is achieved through so-called collective
symmetry breaking. In this letter, we focus on the necessary conditions for a
little Higgs to have a collective Higgs quartic coupling. In one-Higgs doublet
models, a collective quartic requires an electroweak triplet scalar. In
two-Higgs doublet models, a collective quartic requires a triplet or singlet
scalar. As a corollary of this study, we show that some little Higgs theories
have dangerous singlets, a pathology where collective symmetry breaking does
not suppress quadratically-divergent corrections to the Higgs mass.Comment: 4 pages; v2: clarified the existing literature; v3: version to appear
in JHE
Evaluating the Way Forward in Online Student Engagement.
Several factors make up the successful instructional experience in online higher education classes. With the advanced offerings in online learning, educational institutions are compelled to innovate all aspects of their online classes (U.S. Department of Education, 2016). The innovation can lead to a higher caliber learning environment. This paper advances a simple model for Instructors to follow, an Instructional Online Model (IOM), with the intent of improving student engagement, knowledge retention, leading to increased business profit. Instructors who model the discussed techniques may find increased student’s satisfaction with their courses, leading to the students pursuing further online education. Technological advancement and student maturity are themes identified during this research. These trends are topics for further research
Patterns and recent trends in mastectomy and breast conserving surgery for women with early-stage breast tumors in Missouri : an update and further investigation
Rev 09, 2018-06-28)Presented at the 2018 NAACCR conference in Pittsburgh, PA in June 2018.Schmaltz CL, Jackson-Thompson J, Du J, Francis B. Patterns and recent trends in mastectomy and breast conserving surgery for women with early-stage breast tumors in Missouri: An update and further investigation. 2018 Annual Conference of the North American Association of Central Cancer Registries, Pittsburgh, PA. June, 2018.1. Background: Most females age 18–64 diagnosed with an early-stage breast tumor in Missouri, 2008–2015, were surgically treated with either total (simple) mastectomy (TM), modified radical mastectomy (MRM), or breast conserving surgery (BCS). Last year, the Missouri Cancer Registry examined demographic differences between females receiving these treatments and noted a slight decrease in the % of cases getting BCS since 2008 with an increase in TM (& TM+MRM). 2. Purpose: To continue monitoring trends in the surgical treatment of early-stage breast cancer in Missouri and describe the patterns by demographics & tumor characteristics
The Genetics of Basal Cell Carcinoma of the Skin
BCC is the commonest cancer in European-derived populations and Australia has the highest recorded incidence in the world, creating enormous individual and societal cost in management of this disease. The incidence of this cancer has been increasing internationally, with evidence of a 1 to 2% rise in incidence in Australia per year over the last two decades. The main four epidemiological risk factors for the development of BCC are ultraviolet radiation (UVR) exposure, increasing age, male sex, and inability to tan. The pattern and timing of UVR exposure is important to BCC risk, with childhood and intermittent UVR exposure both associated with an increased risk. The complex of inherited characteristics making up an individual’s ‘sun sensitivity’ is also important in determining BCC risk. Very little is known about population genetic susceptibility to BCC outside of the rare genodermatosis Gorlin syndrome. Mutations in the tumour suppressor gene patched (PTCH) are responsible for this BCC predisposition syndrome and the molecular pathway and target genes of this highly conserved pathway are well described. Derangments in this pathway occur in sporadic BCC development, and the PTCH gene is an obvious candidate to contribute to non-syndromic susceptibility to BCC. The melanocortin 1 receptor (MC1R) locus is known to be involved in pigmentary traits and the cutaneous response to UVR, and variants have been associated with skin cancer risk. Many other genes have been considered with respect to population BCC risk and include p53, HPV, GSTs, and HLAs. There is preliminary evidence for specific familial aggregation of BCC, but very little known about the causes. 56 individuals who developed BCC under the age of 40 in the year 2000 were recruited from the Skin and Cancer Foundation of Australia’s database. This represents the youngest 7 – 8% of Australians with BCC from a database that captures approximately 10% of Sydney’s BCCs. 212 of their first degree relatives were also recruited, including 89 parents and 123 siblings of these 56 probands. All subjects were interviewed with respect to their cancer history and all reports of cancer verified with histopathological reports where possible. The oldest unaffected sibling for each proband (where available) was designated as an intra-family control. All cases and control siblings filled out a questionnaire regarding their pigmentary and sun sensitivity factors and underwent a skin examination by a trained examiner. Peripheral blood was collected from these cases and controls for genotyping of PTCH. All the exons of PTCH for which mutations have been documented in Gorlin patients were amplified using PCR. PCR products were screened for mutations using dHPLC, and all detectable variants sequenced. Prevalence of BCC and SCC for the Australian population was estimated from incidence data using a novel statistical approach. Familial aggregation of BCC, SCC and MM occurred within the 56 families studied here. The majority of families with aggregation of skin cancer had a combination of SCC and BCC, however nearly one fifth of families in this study had aggregation of BCC to the exclusion of SCC or MM, suggesting that BCCspecific risk factors are also likely to be at work. Skin cancer risks for first-degree relatives of people with early onset BCC were calculated: sisters and mothers of people with early-onset BCC had a 2-fold increased risk of BCC; brothers had a 5-fold increased risk of BCC; and sisters and fathers of people with early-onset BCC had over four times the prevalence of SCC than that expected. For melanoma, the increased risk was significant for male relatives only, with a 10-fold increased risk for brothers of people with early-onset BCC and 3-fold for fathers. On skin examination of cases and controls, several phenotypic factors were significantly associated with BCC risk. These included increasing risk of BCC with having fair, easyburning skin (ie decreasing skin phototype), and with having signs of cumulative sun damage to the skin in the form of actinic keratoses. Signs reflecting the combination of pigmentary characteristics and sun exposure - in the form of arm freckling and solar lentigines - also gave subjects a significantly increased risk BCC. Constitutive red-green reflectance of the skin was associated with decreased risk of BCC, as measured by spectrophotometery. Other non-significant trends were seen that may become significant in larger studies including associations of BCC with propensity to burn, moderate tanning ability and an inability to tan. No convincing trend for risk of BCC was seen with the pigmentary variables of hair or eye colour, and a non-significant reduced risk of BCC was associated with increasing numbers of seborrhoeic keratoses. Twenty PTCH exons (exons 2, 3, 5 to 18, and 20 to 23) were screened, accounting for 97% of the coding regions with published mutations in PTCH. Nine of these 20 exons were found to harbour single nucleotide polymorphisms (SNPs), seen on dHPLC as variant melting curves and confirmed on direct sequencing. SNPs frequencies were not significantly different to published population frequencies, or to Australian general population frequencies where SNP database population data was unavailable. Assuming a Poisson distribution, and having observed no mutations in a sample of 56, we can be 97.5% confident that if there are any PTCH mutations contributing to early-onset BCC in the Australian population, then their prevalence is less than 5.1%. Overall, this study provides evidence that familial aggregation of BCC is occurring, that first-degree relatives are at increased risk of all three types of skin cancer, and that a combination of environmental and genetic risk factors are likely to be responsible. The PTCH gene is excluded as a major cause of this increased susceptibility to BCC in particular and skin cancer in general. The weaknesses of the study design are explored, the possible clinical relevance of the data is examined, and future directions for research into the genetics of basal cell carcinoma are discussed
Probing Slepton Mass Non-Universality at e^+e^- Linear Colliders
There are many models with non-universal soft SUSY breaking sfermion mass
parameters at the grand unification scale. Even in the mSUGRA model scalar mass
unification might occur at a scale closer to M_Planck, and renormalization
effects would cause a mass splitting at M_GUT. We identify an experimentally
measurable quantity Delta that correlates strongly with delta m^2 =
m^2_{selectron_R}(M_GUT) - m^2_{selectron_L}(M_GUT), and which can be measured
at electron-positron colliders provided both selectrons and the chargino are
kinematically accessible. We show that if these sparticle masses can be
measured with a precision of 1% at a 500 GeV linear collider, the resulting
precision in the determination of Delta may allow experiments to distinguish
between scalar mass unification at the GUT scale from the corresponding
unification at Q ~ M_Planck. Experimental determination of Delta would also
provide a distinction between the mSUGRA model and the recently proposed
gaugino-mediation model. Moreover, a measurement of Delta (or a related
quantity Delta') would allow for a direct determination of delta m^2.Comment: 15 pages, RevTeX, 4 postscript figure
Sneutrino Mass Measurements at e+e- Linear Colliders
It is generally accepted that experiments at an e+e- linear colliders will be
able to extract the masses of the selectron as well as the associated
sneutrinos with a precision of ~ 1% by determining the kinematic end points of
the energy spectrum of daughter electrons produced in their two body decays to
a lighter neutralino or chargino. Recently, it has been suggested that by
studying the energy dependence of the cross section near the production
threshold, this precision can be improved by an order of magnitude, assuming an
integrated luminosity of 100 fb^-1. It is further suggested that these
threshold scans also allow the masses of even the heavier second and third
generation sleptons and sneutrinos to be determined to better than 0.5%. We
re-examine the prospects for determining sneutrino masses. We find that the
cross sections for the second and third generation sneutrinos are too small for
a threshold scan to be useful. An additional complication arises because the
cross section for sneutrino pair to decay into any visible final state(s)
necessarily depends on an unknown branching fraction, so that the overall
normalization in unknown. This reduces the precision with which the sneutrino
mass can be extracted. We propose a different strategy to optimize the
extraction of m(\tilde{\nu}_\mu) and m(\tilde{\nu}_\tau) via the energy
dependence of the cross section. We find that even with an integrated
luminosity of 500 fb^-1, these can be determined with a precision no better
than several percent at the 90% CL. We also examine the measurement of
m(\tilde{\nu}_e) and show that it can be extracted with a precision of about
0.5% (0.2%) with an integrated luminosity of 120 fb^-1 (500 fb^-1).Comment: RevTex, 46 pages, 15 eps figure
Little Higgs model effects in
Though the predictions of the Standard Model (SM) are in excellent agreement
with experiments there are still several theoretical problems associated with
the Higgs sector of the SM, where it is widely believed that some ``{\it new
physics}'' will take over at the TeV scale. One beyond the SM theory which
resolves these problems is the Little Higgs (LH) model. In this work we have
investigated the effects of the LH model on \gggg scattering
\cite{Choudhury:2006xa}.Comment: Talk given at LCWS06, Bangalore, 4 pages (style files included
- …