175 research outputs found

    Effect of exogenous methyl jasmonate on growth, gas exchange and chlorophyll contents of soybean subjected to drought

    Get PDF
    Drought is considered as one of the major constraints to crop production worldwide. Methyl jasmonate (MJ) is a plant-signaling molecule that elicits a wide variety of plant responses ranging from morphological to molecular level. A pot-culture study was undertaken to investigate the possible role of MJ-treatment on growth, gas exchange and chlorophyll contents in soybean (Glycine max L. Merrill.) plants subjected to water stress. The soybean plants were grown under normal water supply conditions till blooming and were then subjected to moisture stress by withholding water followed by foliar application of MJ at the rate of 50 μM. Drought stress severely hampered the growth, leaf gas-exchange attributes as well as the photosynthetic pigment contents. It was evident from the experimental results that, MJ-treatment led to further impairment in growth by inhibiting the leaf gas exchange attributes and chlorophyll contents. It is worth noted that, MJ-treatment also hampered the performance of soybean crop under well-watered conditions. In all, MJ-treatment appeared to arrest the growth, impaired leaf gas-exchange attributes and caused the loss of chlorophyll contents of soybean plants under water deficit conditions.Key words: Chlorophyll contents, drought stress, growth, gas exchange, soybean (Glycine max L. Merrill.)

    Immunohistochemical expression and prognostic value of PD-L1 in Extrapulmonary small cell carcinoma: a single institution experience

    Get PDF
    BACKGROUND: Extrapulmonary small cell carcinomas (ESCC) are rare but aggressive tumors. Relapses are common despite treatment with chemotherapy and/or radiotherapy. Prospective data for treatment of ESCC are lacking; treatment of these cancers usually incorporates lung small cell carcinoma treatment recommendations. Cancer staging remains the most important prognostic factor. Cancer immunotherapy targeting the PD-1/PD-L1 pathway has shown efficacy in multiple tumor types, and could be an appealing treatment strategy for these rare tumors. METHODS: We investigated PD-L1 expression by immunochemistry (IHC) in ESCCs diagnosed at University of Massachusetts Medical Center, from 1999 to 2016. 34 cases with sufficient material were selected for PD-L1 IHC analysis using clone E1L3N. PD-L1 expression was evaluated using the combined positive score (CPS). Retrospective chart review was performed. We evaluated the incidence and prognostic value of PD-L1 expression in ESCC at our institution. RESULTS: Twelve out 34 cases (35%) had PD-L1 CPS scores \u3e /=1. Ten cases had CPS scores ranging 1-5, whereas 2 cases had CPS scores \u3e 80. The overall response rate to the standard chemotherapy with/without radiotherapy in the PD-L1 positive group was 80% versus 67% for the PDL-1 negative group (p-value 0.67). The median overall survival for the PD-L1 positive group, regardless of stage, was 11.5 months versus 7 months for PD-L1 negative group (p-value 0.34). Patients with limited stage disease with positive PD-L1 had a median survival of 53 months compared to 15 months for patients with PD-L1 negative limited stage (p-value 0.80). CONCLUSIONS: This study showed that at least one third of our ESCC tissue samples expressed PD-L1. There was a trend for higher response rates to the standard chemotherapy with/without radiotherapy and improved survival in PD-L1 positive patients. Further studies are required to understand the implications of immune dysregulation in these aggressive tumors. PD-L1/PD-1 inhibitors should be investigated in this group of patients

    CCL24 regulates biliary inflammation and fibrosis in primary sclerosing cholangitis

    Get PDF
    ˆCCL24 is a pro-fibrotic, pro-inflammatory chemokine expressed in several chronic fibrotic diseases. In the liver, CCL24 plays a role in fibrosis and inflammation, and blocking CCL24 led to reduced liver injury in experimental models. We studied the role of CCL24 in primary sclerosing cholangitis (PSC) and evaluated the potential therapeutic effect of blocking CCL24 in this disease. Multidrug resistance gene 2-knockout (Mdr2-/-) mice demonstrated CCL24 expression in liver macrophages and were used as a relevant experimental PSC model. CCL24-neutralizing monoclonal antibody, CM-101, significantly improved inflammation, fibrosis, and cholestasis-related markers in the biliary area. Moreover, using spatial transcriptomics, we observed reduced proliferation and senescence of cholangiocytes following CCL24 neutralization. Next, we demonstrated that CCL24 expression was elevated under pro-fibrotic conditions in primary human cholangiocytes and macrophages, and it induced proliferation of primary human hepatic stellate cells and cholangiocytes, which was attenuated following CCL24 inhibition. Correspondingly, CCL24 was found to be highly expressed in liver biopsies of patients with PSC. CCL24 serum levels correlated with Enhanced Liver Fibrosis score, most notably in patients with high alkaline phosphatase levels. These results suggest that blocking CCL24 may have a therapeutic effect in patients with PSC by reducing liver inflammation, fibrosis, and cholestasis

    Epigenomic Profiling of Human CD4+ T Cells Supports a Linear Differentiation Model and Highlights Molecular Regulators of Memory Development

    Get PDF
    SummaryThe impact of epigenetics on the differentiation of memory T (Tmem) cells is poorly defined. We generated deep epigenomes comprising genome-wide profiles of DNA methylation, histone modifications, DNA accessibility, and coding and non-coding RNA expression in naive, central-, effector-, and terminally differentiated CD45RA+ CD4+ Tmem cells from blood and CD69+ Tmem cells from bone marrow (BM-Tmem). We observed a progressive and proliferation-associated global loss of DNA methylation in heterochromatic parts of the genome during Tmem cell differentiation. Furthermore, distinct gradually changing signatures in the epigenome and the transcriptome supported a linear model of memory development in circulating T cells, while tissue-resident BM-Tmem branched off with a unique epigenetic profile. Integrative analyses identified candidate master regulators of Tmem cell differentiation, including the transcription factor FOXP1. This study highlights the importance of epigenomic changes for Tmem cell biology and demonstrates the value of epigenetic data for the identification of lineage regulators

    Structure-based programming of lymph-node targeting in molecular vaccines

    Get PDF
    In cancer patients, visual identification of sentinel lymph nodes (LNs) is achieved by the injection of dyes that bind avidly to endogenous albumin, targeting these compounds to LNs, where they are efficiently filtered by resident phagocytes1, 2. Here we translate this ‘albumin hitchhiking’ approach to molecular vaccines, through the synthesis of amphiphiles (amph-vaccines) comprising an antigen or adjuvant cargo linked to a lipophilic albumin-binding tail by a solubility-promoting polar polymer chain. Administration of structurally optimized CpG-DNA/peptide amph-vaccines in mice resulted in marked increases in LN accumulation and decreased systemic dissemination relative to their parent compounds, leading to 30-fold increases in T-cell priming and enhanced anti-tumour efficacy while greatly reducing systemic toxicity. Amph-vaccines provide a simple, broadly applicable strategy to simultaneously increase the potency and safety of subunit vaccines.David H. Koch Institute for Integrative Cancer Research at MIT (Koch Institute Support (core) Grant P30-CA14051)National Cancer Institute (U.S.)National Institutes of Health (U.S.) (grant AI091693)National Institutes of Health (U.S.) (grant AI104715)National Institutes of Health (U.S.) (AI095109)United States. Dept. of Defense (contract W911NF-13-D-0001)United States. Dept. of Defense (contract W911NF-07-D-0004)Ragon Institute of MGH, MIT, and Harvar
    • …
    corecore