5,674 research outputs found

    Space-time properties of free motion time-of-arrival eigenstates

    Full text link
    The properties of the time-of-arrival operator for free motion introduced by Aharonov and Bohm and of its self-adjoint variants are studied. The domains of applicability of the different approaches are clarified. It is shown that the arrival time of the eigenstates is not sharply defined. However, strongly peaked real-space (normalized) wave packets constructed with narrow Gaussian envelopes centred on one of the eigenstates provide an arbitrarily sharp arrival time.Comment: REVTEX, 12 pages, 4 postscript figure

    Spin and orbital dynamics through the metal-to-insulator transition in Cd2_2Os2_2O7_7 probed with high-resolution RIXS

    Get PDF
    High-resolution resonant inelastic x-ray scattering (RIXS) measurements (Δ\DeltaE = 46 meV) have been performed on Cd2_2Os2_2O7_7 through the metal-to-insulator transition (MIT). A magnetic excitation at 125 meV evolves continuously through the MIT, in agreement with recent Raman scattering results, and provides further confirmation for an all-in, all-out magnetic ground state. Asymmetry of this feature is likely a result of coupling between the electronic and magnetic degrees of freedom. We also observe a broad continuum of interband excitations centered at 0.3 eV energy loss. This is indicative of significant hybridization between Os 5dd and O 2pp states, and concurrent itinerant nature of the system. In turn, this suggests a possible break down of the free-ion model for Cd2_2Os2_2O7_7.Comment: Accepted in Physical Review B (10 pages

    Evidence for core-hole-mediated inelastic x-ray scattering from metallic Fe1.087_{1.087}Te

    Get PDF
    We present a detailed analysis of resonant inelastic scattering (RIXS) from Fe1.087_{1.087}Te with unprecedented energy resolution. In contrast to the sharp peaks typically seen in insulating systems at the transition metal L3L_3 edge, we observe spectra which show different characteristic features. For low energy transfer, we experimentally observe theoretically predicted many-body effects of resonant Raman scattering from a non-interacting gas of fermions. Furthermore, we find that limitations to this many-body electron-only theory are realized at high Raman shift, where an exponential lineshape reveals an energy scale not present in these considerations. This regime, identified as emission, requires considerations of lattice degrees of freedom to understand the lineshape. We argue that both observations are intrinsic general features of many-body physics of metals.Comment: 4 pages, 4 figure

    Unification of the conditional probability and semiclassical interpretations for the problem of time in quantum theory

    Full text link
    We show that the time-dependent Schr\"odinger equation (TDSE) is the phenomenological dynamical law of evolution unraveled in the classical limit from a timeless formulation in terms of probability amplitudes conditioned by the values of suitably chosen internal clock variables, thereby unifying the conditional probability interpretation (CPI) and the semiclassical approach for the problem of time in quantum theory. Our formalism stems from an exact factorization of the Hamiltonian eigenfunction of the clock plus system composite, where the clock and system factors play the role of marginal and conditional probability amplitudes, respectively. Application of the Variation Principle leads to a pair of exact coupled pseudoeigenvalue equations for these amplitudes, whose solution requires an iterative self-consistent procedure. The equation for the conditional amplitude constitutes an effective "equation of motion" for the quantum state of the system with respect to the clock variables. These coupled equations also provide a convenient framework for treating the back-reaction of the system on the clock at various levels of approximation. At the lowest level, when the WKB approximation for the marginal amplitude is appropriate, in the classical limit of the clock variables the TDSE for the system emerges as a matter of course from the conditional equation. In this connection, we provide a discussion of the characteristics required by physical systems to serve as good clocks. This development is seen to be advantageous over the original CPI and semiclassical approach since it maintains the essence of the conventional formalism of quantum mechanics, admits a transparent interpretation, avoids the use of the Born-Oppenheimer approximation, and resolves various objections raised about them.Comment: 10 pages. Typographical errors correcte

    Capital Mobility in Neoclassical Models of Growth

    Get PDF

    The worldwide costs of marine protected areas

    Get PDF
    Declines in marine harvests, wildlife, and habitats have prompted calls at both the 2002 World Summit on Sustainable Development and the 2003 World Parks Congress for the establishment of a global system of marine protected areas (MPAs). MPAs that restrict fishing and other human activities conserve habitats and populations and, by exporting biomass, may sustain or increase yields of nearby fisheries. Here we provide an estimate of the costs of a global MPA network, based on a survey of the running costs of 83 MPAs worldwide. Annual running costs per unit area spanned six orders of magnitude, and were higher in MPAs that were smaller, closer to coasts, and in high-cost, developed countries. Models extrapolating these findings suggest that a global MPA network meeting the World Parks Congress target of conserving 20–30% of the world’s seas might cost between 5billionand5 billion and 19 billion annually to run and would probably create around one million jobs. Although substantial, gross network costs are less than current government expenditures on harmful subsidies to industrial fisheries. They also ignore potential private gains from improved fisheries and tourism and are dwarfed by likely social gains from increasing the sustainability of fisheries and securing vital ecosystem services

    Novel roles for chloride channels, exchangers, and regulators in chronic inflammatory airway diseases

    Get PDF
    Chloride transport proteins play critical roles in inflammatory airway diseases, contributing to the detrimental aspects of mucus overproduction, mucus secretion, and airway constriction. However, they also play crucial roles in contributing to the innate immune properties of mucus and mucociliary clearance. In this review, we focus on the emerging novel roles for a chloride channel regulator (CLCA1), a calcium-activated chloride channel (TMEM16A), and two chloride exchangers (SLC26A4/pendrin and SLC26A9) in chronic inflammatory airway diseases

    Oseledets' Splitting of Standard-like Maps

    Get PDF
    For the class of differentiable maps of the plane and, in particular, for standard-like maps (McMillan form), a simple relation is shown between the directions of the local invariant manifolds of a generic point and its contribution to the finite-time Lyapunov exponents (FTLE) of the associated orbit. By computing also the point-wise curvature of the manifolds, we produce a comparative study between local Lyapunov exponent, manifold's curvature and splitting angle between stable/unstable manifolds. Interestingly, the analysis of the Chirikov-Taylor standard map suggests that the positive contributions to the FTLE average mostly come from points of the orbit where the structure of the manifolds is locally hyperbolic: where the manifolds are flat and transversal, the one-step exponent is predominantly positive and large; this behaviour is intended in a purely statistical sense, since it exhibits large deviations. Such phenomenon can be understood by analytic arguments which, as a by-product, also suggest an explicit way to point-wise approximate the splitting.Comment: 17 pages, 11 figure

    Bimagnon studies in cuprates with Resonant Inelastic X-ray Scattering at the O K edge. I - An assessment on La2CuO4 and a comparison with the excitation at Cu L3 and Cu K edges

    Full text link
    We assess the capabilities of magnetic Resonant Inelastic X-ray Scattering (RIXS) at the O KK edge in undoped cuprates by taking La_{2}CuO_{4} as a benchmark case, based on a series of RIXS measurements that we present here. By combining the experimental results with basic theory we point out the fingerprints of bimagnon in the O KK edge RIXS spectra. These are a dominant peak around 450 meV, the almost complete absence of dispersion both with π\pi and σ\sigma polarization and the almost constant intensity vs. the transferred momentum with σ\sigma polarization. This behavior is quite different from Cu L3L_3 edge RIXS giving a strongly dispersing bimagnon tending to zero at the center of the Brillouin zone. This is clearly shown by RIXS measurements at the Cu L3L_3 edge that we present. The Cu L3L_3 bimagnon spectra and those at Cu KK edge - both from the literature and from our data - however, have the same shape. These similarities and differences are understood in terms of different sampling of the bimagnon continuum. This panorama points out the unique possibilities offered by O KK RIXS in the study of magnetic excitations in cuprates near the center of the BZ
    • …
    corecore