294 research outputs found

    Modeling the Frozen-In Anticyclone in the 2005 Arctic Summer Stratosphere

    Get PDF
    Immediately following the breakup of the 2005 Arctic spring stratospheric vortex, a tropical air mass, characterized by low potential vorticity (PV) and high nitrous oxide (N2O), was advected poleward and became trapped in the easterly summer polar vortex. This feature, known as a "Frozen-In Anticyclone (FrIAC)", was observed in Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) data to span the potential temperature range from approximately 580 to 1100 K (approximately 25 to 40 km altitude) and to persist from late March to late August 2005. This study compares MLS N2O observations with simulations from the Global Modeling Initiative (GMI) chemistry and transport model, the GEOS-5/MERRA Replay model, and the VanLeer Icosahedral Triangular Advection isentropic transport model to elucidate the processes involved in the lifecycle of the FrIAC which is here divided into three distinct phases. During the "spin-up phase" (March to early April), strong poleward flow resulted in a tight isolated anticyclonic vortex at approximately 70-90 deg N, marked with elevated N2O. GMI, Replay, and VITA all reliably simulted the spin-up of the FrIAC, although the GMI and Replay peak N2O values were too low. The FrIAC became trapped in the developing summer easterly flow and circulated around the polar region during the "anticyclonic phase" (early April to the end of May). During this phase, the FrIAC crossed directly over the pole between the 7th and 14th of April. The VITA and Replay simulations transported the N2O anomaly intact during this crossing, in agreement with MLS, but unrealistic dispersion of the anomaly occurred in the GMI simulation due to excessive numerical mixing of the polar cap. The vortex associated with the FrIAC was apparently resistant to the weak vertical hear during the anticyclonic phase, and it thereby protected the embedded N20 anomaly from stretching. The vortex decayed in late May due to diabatic processes, leaving the N2O anomaly exposed to horizontal and vertical wind shears during the "shearing phase" (June to August). The observed lifetime of the FrIAC during this phase is consistent with time-scales calculated from the ambient horizontal and vertical wind shear. Replay maintained the horizontal structure of the N2O anomaly similar to NILS well into August. The VITA simulation also captured the horizontal structure of the FrIAC during this phase, but VITA eventually developed fine-scale N2O structure not observed in MLS data

    KELT-3b: A Hot Jupiter Transiting A V=9.8 Late-F Star

    Get PDF
    We report the discovery of KELT-3b, a moderately inflated transiting hot Jupiter with a mass of 1.477(-0.067)(+0.066) M-J, radius of 1.345 +/- 0.072 R-J, and an orbital period of 2.7033904 +/- 0.000010 days. The host star, KELT-3, is a V = 9.8 late F star with M-* = 1.278(-0.061)(+0.063) M-circle dot, R-* = 1.472(-0.067)(+0.065) R-circle dot, T-eff = 6306(-49)(+50) K, log(g) = 4.209(-0.031)(+0.033), and [Fe/H] = 0.044(-0.082)(+0.080), and has a likely proper motion companion. KELT-3b is the third transiting exoplanet discovered by the KELT survey, and is orbiting one of the 20 brightest known transiting planet host stars, making it a promising candidate for detailed characterization studies. Although we infer that KELT-3 is significantly evolved, a preliminary analysis of the stellar and orbital evolution of the system suggests that the planet has likely always received a level of incident flux above the empirically identified threshold for radius inflation suggested by Demory & Seager

    KELT-20b: A Giant Planet With A Period Of P ~ 3.5 Days Transiting The V ~ 7.6 Early A Star HD 185603

    Get PDF
    We report the discovery of KELT-20b, a hot Jupiter transiting a early A star, HD 185603, with an orbital period of days. Archival and follow-up photometry, Gaia parallax, radial velocities, Doppler tomography, and AO imaging were used to confirm the planetary nature of KELT-20b and characterize the system. From global modeling we infer that KELT-20 is a rapidly rotating ( ) A2V star with an effective temperature of K, mass of , radius of , surface gravity of , and age of . The planetary companion has a radius of , a semimajor axis of au, and a linear ephemeris of . We place a upper limit of on the mass of the planet. Doppler tomographic measurements indicate that the planetary orbit normal is well aligned with the projected spin axis of the star ( ). The inclination of the star is constrained to , implying a three-dimensional spin–orbit alignment of . KELT-20b receives an insolation flux of , implying an equilibrium temperature of of ∌2250 K, assuming zero albedo and complete heat redistribution. Due to the high stellar , KELT-20b also receives an ultraviolet (wavelength nm) insolation flux of , possibly indicating significant atmospheric ablation. Together with WASP-33, Kepler-13 A, HAT-P-57, KELT-17, and KELT-9, KELT-20 is the sixth A star host of a transiting giant planet, and the third-brightest host (in V ) of a transiting planet
    • 

    corecore