13,322 research outputs found

    The Improvement of Efficiency in the Numerical Computation of Orbit Trajectories

    Get PDF
    An analysis, system design, programming, and evaluation of results are described for numerical computation of orbit trajectories. Evaluation of generalized methods, interaction of different formulations for satellite motion, transformation of equations of motion and integrator loads, and development of efficient integrators are also considered

    Probing Light Atoms at Sub-nanometer Resolution: Realization of Scanning Transmission Electron Microscope Holography

    Full text link
    Atomic resolution imaging in transmission electron microscopy (TEM) and scanning TEM (STEM) of light elements in electron-transparent materials has long been a challenge. Biomolecular materials, for example, are rapidly altered when illuminated with electrons. These issues have driven the development of TEM and STEM techniques that enable the structural analysis of electron beam-sensitive and weakly scattering nano-materials. Here, we demonstrate such a technique, STEM holography, capable of absolute phase and amplitude object wave measurement with respect to a vacuum reference wave. We use an amplitude-dividing nanofabricated grating to prepare multiple spatially separated electron diffraction probe beams focused at the sample plane, such that one beam transmits through the specimen while the others pass through vacuum. We raster-scan the diffracted probes over the region of interest. We configure the post specimen imaging system of the microscope to diffraction mode, overlapping the probes to form an interference pattern at the detector. Using a fast-readout, direct electron detector, we record and analyze the interference fringes at each position in a 2D raster scan to reconstruct the complex transfer function of the specimen, t(x). We apply this technique to image a standard target specimen consisting of gold nanoparticles on a thin amorphous carbon substrate, and demonstrate 2.4 angstrom resolution phase images. We find that STEM holography offers higher phase-contrast of the amorphous material while maintaining Au atomic lattice resolution when compared with high angle annular dark field STEM.Comment: 9 pages, 5 figures in main text, 1 supplemental figure in the appendi

    Inversion of spinning sound fields

    Get PDF
    A method is presented for the reconstruction of rotating monopole source distributions using acoustic pressures measured on a sideline parallel to the source axis. The method requires no \textit{a priori} assumptions about the source other than that its strength at the frequency of interest vary sinusoidally in azimuth on the source disc so that the radiated acoustic field is composed of a single circumferential mode. When multiple azimuthal modes are present, the acoustic field can be decomposed into azimuthal modes and the method applied to each mode in sequence. The method proceeds in two stages, first finding an intermediate line source derived from the source distribution and then inverting this line source to find the radial variation of source strength. A far-field form of the radiation integrals is derived, showing that the far field pressure is a band-limited Fourier transform of the line source, establishing a limit on the quality of source reconstruction which can be achieved using far-field measurements. The method is applied to simulated data representing wind-tunnel testing of a ducted rotor system (tip Mach number~0.74) and to control of noise from an automotive cooling fan (tip Mach number~0.14), studies which have appeared in the literature of source identification.Comment: Revised version of paper submitted to JASA; five more figures; expanded content with more discussion of error behaviour and relation to Nearfield Acoustical Holograph

    The influence of composition, annealing treatment, and texture on the fracture toughness of Ti-5Al-2.5Sn plate at cryogenic temperatures

    Get PDF
    The plane strain fracture toughness K sub Ic and conventional tensile properties of two commercially produced one-inch thick Ti-5Al-2.5Sn plates were determined at cryogenic temperatures. One plate was extra-low interstitial (ELI) grade, the other normal interstitial. Portions of each plate were mill annealed at 1088 K (1500 F) followed by either air cooling or furnace cooling. The tensile properties, flow curves, and K sub Ic of these plates were determined at 295 K (room temperature), 77 K (liquid nitrogen temperature), and 20 K (liquid hydrogen temperature)

    Fracture toughness of brittle materials determined with chevron notch specimens

    Get PDF
    The use of chevron-notch specimens for determining the plane strain fracture toughness (K sub Ic) of brittle materials is discussed. Three chevron-notch specimens were investigated: short bar, short rod, and four-point-bend. The dimensionless stress intensity coefficient used in computing K sub Ic is derived for the short bar specimen from the superposition of ligament-dependent and ligament-independent solutions for the straight through crack, and also from experimental compliance calibrations. Coefficients for the four-point-bend specimen were developed by the same superposition procedure, and with additional refinement using the slice model of Bluhm. Short rod specimen stress intensity coefficients were determined only by experimental compliance calibration. Performance of the three chevron-notch specimens and their stress intensity factor relations were evaluated by tests on hot-pressed silicon nitride and sintered aluminum oxide. Results obtained with the short bar and the four-point-bend specimens on silicon nitride are in good agreement and relatively free of specimen geometry and size effects within the range investigated. Results on aluminum oxide were affected by specimen size and chevron-notch geometry, believed due to a rising crack growth resistance curve for the material. Only the results for the short bar specimen are presented in detail

    3D Spatial Attention Effects are Independent of Projected 2D Size and Location for Older and Younger Drivers

    Get PDF
    Previous research has found the reaction time (RT) to light change targets when performing a car following task, is partially dependent on the distance in depth of the target from the driver. Researchers have concluded from this evidence that the spatial extent of attention is three dimensional (3D) during dual-task driving. However, in prior experiments the effect of two-dimensional (2D) projected size and position was not experimentally controlled. If spatial attention is 3D, then there should be an effect of target distance when 2D projected size and position are constant. The purpose of the current work was to assess this hypothesis. We manipulated the size and position of light-change targets at different depths to hold the projected size and position of targets constant between blocks. Although projected size and position were identical in this experiment, the results demonstrated that for younger and older drivers, targets further from the driver were responded to more slowly than targets closer to the driver. These results demonstrate that 3D attention effects are not dependent on projected size or position, and that the mechanism of 3D attention is present in younger and older drivers. These results, considered with the findings of other studies, suggest that tests to assess crash risk, such as the UFOV, are limited in scope because such tests fail to incorporate variation in attention as a function of distance

    Flux calibration of the AAO/UKST SuperCOSMOS H-alpha Survey

    Full text link
    The AAO/UKST SuperCOSMOS Hα\alpha Survey (SHS) was, when completed in 2003, a powerful addition to extant wide-field surveys. The combination of areal coverage, spatial resolution and sensitivity in a narrow imaging band, still marks it out today as an excellent resource for the astronomical community. The 233 separate fields are available online in digital form, with each field covering 25 square degrees. The SHS has been the motivation for equivalent surveys in the north, and new digital Hα\alpha surveys now beginning in the south such as VPHAS+. It has been the foundation of many important discovery projects with the Macquarie/AAO/Strasbourg Hα\alpha planetary nebula project being a particularly successful example. However, the full potential of the SHS has been hampered by lack of a clear route to acceptable flux calibration from the base photographic data. We have determined the calibration factors for 170 individual SHS fields, and present a direct pathway to the measurement of integrated Hα\alpha fluxes and surface brightnesses for resolved nebulae detected in the SHS. We also include a catalogue of integrated Hα\alpha fluxes for >>100 planetary and other nebulae measured from the SHS, and use these data to show that fluxes, accurate to ±\pm 0.10 - 0.14 dex (∼\sim25-35 per cent), can be obtained from these fields. For the remaining 63 fields, a mean calibration factor of 12.0 counts pix−1^{-1} R−1^{-1} can be used, allowing the determination of reasonable integrated fluxes accurate to better than ±\pm0.2 dex (∼\sim50 per cent). We outline the procedures involved and the caveats that need to be appreciated in achieving such flux measurements. This paper forms a handy reference source that will significantly increase the scientific utility of the SHS.Comment: 14 pages, 12 figures, 2 tables (plus 7 pp. of supplementary online information). Version to appear in MNRA
    • …
    corecore