276,820 research outputs found

    Interferometric Observations of the Nuclear Region of Arp220 at Submillimeter Wavelengths

    Get PDF
    We report the first submillimeter interferometric observations of an ultraluminous infrared galaxy. We observed Arp220 in the CO J=3-2 line and 342GHz continuum with the single baseline CSO-JCMT interferometer consisting of the Caltech Submillimeter Observatory (CSO) and the James Clerk Maxwell Telescope (JCMT). Models were fit to the measured visibilities to constrain the structure of the source. The morphologies of the CO J=3-2 line and 342GHz continuum emission are similar to those seen in published maps at 230 and 110GHz. We clearly detect a binary source separated by about 1 arcsec in the east-west direction in the 342GHz continuum. The CO J=3-2 visibility amplitudes, however, indicate a more complicated structure, with evidence for a compact binary at some velocities and rather more extended structure at others. Less than 30% of the total CO J=3-2 emission is detected by the interferometer, which implies the presence of significant quantities of extended gas. We also obtained single-dish CO J=2-1, CO J=3-2 and HCN J=4-3 spectra. The HCN J=4-3 spectrum, unlike the CO spectra, is dominated by a single redshifted peak. The HCN J=4-3/CO J=3-2, HCN J=4-3/HCN J=1-0 and CO J=3-2/2-1 line ratios are larger in the redshifted (eastern) source, which suggests that the two sources may have different physical conditions. This result might be explained by the presence of an intense starburst that has begun to deplete or disperse the densest gas in the western source, while the eastern source harbors undispersed high density gas.Comment: 17 pages, 9 figures, 4 Tables. accepted by Ap

    Comparing the Weighted Density Approximation with the LDA and GGA for Ground State Properties of Ferroelectric Perovskites

    Full text link
    First-principles calculations within the weighted density approximation (WDA) were performed for ground state properties of ferroelectric perovskites PbTiO3_3, BaTiO3_3, SrTiO3_3, KNbO3_3 and KTaO3_3. We used the plane-wave pseudopotential method, a pair distribution function GG based on the uniform electron gas, and shell partitioning. Comparing with the local density approximation (LDA) and the general gradient approximation (GGA), we found that the WDA significantly improves the equilibrium volume of these materials in cubic symmetry over both the LDA and GGA; Ferroelectric instabilities calculated by the WDA agree with the LDA and GGA very well; At the experimental ferroelectric lattice, optimized atom positions by the WDA are in good agreement with measured data; However the WDA overestimates the strain of tetragonal PbTiO3_3 at experimental volume; The WDA overestimates the volume of fully relaxed structures, but the GGA results are even worse. Some calculations were also done with other models for GG. It is found that a GG with longer range behavior yields improved relaxed structures. Possible avenues for improving the WDA are discussed.Comment: 19 pages, 3 figures, submitted to PR

    The Las Campanas IR Survey: Early Type Galaxy Progenitors Beyond Redshift One

    Get PDF
    (Abridged) We have identified a population of faint red galaxies from a 0.62 square degree region of the Las Campanas Infrared Survey whose properties are consistent with their being the progenitors of early-type galaxies. The optical and IR colors, number-magnitude relation and angular clustering together indicate modest evolution and increased star formation rates among the early-type field population at redshifts between one and two. The counts of red galaxies with HH magnitudes between 17 and 20 rise with a slope that is much steeper than that of the total H sample. The surface density of red galaxies drops from roughly 3000 per square degree at H = 20.5, I-H > 3 to ~ 20 per square degree at H = 20, I-H > 5. The V-I colors are approximately 1.5 magnitudes bluer on average than a pure old population and span a range of more than three magnitudes. The colors, and photometric redshifts derived from them, indicate that the red galaxies have redshift distributions adequately described by Gaussians with sigma_z ~ 0.2centerednearredshiftone,withtheexceptionthatgalaxieshaving centered near redshift one, with the exception that galaxies having V-I3$ are primarily in the 1.5 < z < 2 range. We find co-moving correlation lengths of 9-10 Mpc at z ~ 1, comparable to, or larger than, those found for early-type galaxies at lower redshifts. A simple photometric evolution model reproduces the counts of the red galaxies, with only a ~ 30% decline in the underlying space density of early-type galaxies at z ~ 1.2. We suggest on the basis of the colors, counts, and clustering that these red galaxies are the bulk of the progenitors of present day early-type galaxies.Comment: 5 pages, 3 figures, accepted for publication in the ApJ Letter

    Evolution of the Spin Gap Upon Doping a 2-Leg Ladder

    Full text link
    The evolution of the spin gap of a 2-leg ladder upon doping depends upon the nature of the lowest triplet excitations in a ladder with two holes. Here we study this evolution using various numerical techniques for a t-t'-J ladder as the next-near-neighbor hopping t' is varied. We find that depending on the value of t', the spin gap can evolve continuously or discontinuously and the lowest triplet state can correspond to a magnon, a bound magnon-hole-pair, or two separate quasi-particles. Previous experimental results on the superconducting two-leg ladder Sr12Ca2Cu24O41 are discussed.Comment: 4 pages, latex, submitted to PR

    On the Role of Global Warming on the Statistics of Record-Breaking Temperatures

    Full text link
    We theoretically study long-term trends in the statistics of record-breaking daily temperatures and validate these predictions using Monte Carlo simulations and data from the city of Philadelphia, for which 126 years of daily temperature data is available. Using extreme statistics, we derive the number and the magnitude of record temperature events, based on the observed Gaussian daily temperatures distribution in Philadelphia, as a function of the number of elapsed years from the start of the data. We further consider the case of global warming, where the mean temperature systematically increases with time. We argue that the current warming rate is insufficient to measurably influence the frequency of record temperature events over the time range of the observations, a conclusion that is supported by numerical simulations and the Philadelphia temperature data.Comment: 11 pages, 6 figures, 2-column revtex4 format. For submission to Journal of Climate. Revised version has some new results and some errors corrected. Reformatted for Journal of Climate. Second revision has an added reference. In the third revision one sentence that explains the simulations is reworded for clarity. New revision 10/3/06 has considerable additions and new results. Revision on 11/8/06 contains a number of minor corrections and is the version that will appear in Phys. Rev.

    Quantizing the damped harmonic oscillator

    Full text link
    We consider the Fermi quantization of the classical damped harmonic oscillator (dho). In past work on the subject, authors double the phase space of the dho in order to close the system at each moment in time. For an infinite-dimensional phase space, this method requires one to construct a representation of the CAR algebra for each time. We show that unitary dilation of the contraction semigroup governing the dynamics of the system is a logical extension of the doubling procedure, and it allows one to avoid the mathematical difficulties encountered with the previous method.Comment: 4 pages, no figure

    A measure of majorisation emerging from single-shot statistical mechanics

    Full text link
    The use of the von Neumann entropy in formulating the laws of thermodynamics has recently been challenged. It is associated with the average work whereas the work guaranteed to be extracted in any single run of an experiment is the more interesting quantity in general. We show that an expression that quantifies majorisation determines the optimal guaranteed work. We argue it should therefore be the central quantity of statistical mechanics, rather than the von Neumann entropy. In the limit of many identical and independent subsystems (asymptotic i.i.d) the von Neumann entropy expressions are recovered but in the non-equilbrium regime the optimal guaranteed work can be radically different to the optimal average. Moreover our measure of majorisation governs which evolutions can be realized via thermal interactions, whereas the nondecrease of the von Neumann entropy is not sufficiently restrictive. Our results are inspired by single-shot information theory.Comment: 54 pages (15+39), 9 figures. Changed title / changed presentation, same main results / added minor result on pure bipartite state entanglement (appendix G) / near to published versio

    String amplitudes in arbitrary dimensions

    Full text link
    We calculate gravitational dressed tachyon correlators in non critcal dimensions. The 2D gravity part of our theory is constrained to constant curvature. Then scaling dimensions of gravitational dressed vertex operators are equal to their bare conformal dimensions. Considering the model as d+2 dimensional critical string we calculate poles of generalized Shapiro-Virasoro amplitudes.Comment: 14 page

    Quantum sticking, scattering and transmission of 4He atoms from superfluid 4He surfaces

    Get PDF
    We develop a microscopic theory of the scattering, transmission, and sticking of 4He atoms impinging on a superfluid 4He slab at near normal incidence, and inelastic neutron scattering from the slab. The theory includes coupling between different modes and allows for inelastic processes. We find a number of essential aspects that must be observed in a physically meaningful and reliable theory of atom transmission and scattering; all are connected with multiparticle scattering, particularly the possibility of energy loss. These processes are (a) the coupling to low-lying (surface) excitations (ripplons/third sound) which is manifested in a finite imaginary part of the self energy, and (b) the reduction of the strength of the excitation in the maxon/roton region
    corecore