4,682 research outputs found

    Non-Markovian reservoir-dependent squeezing

    Full text link
    The squeezing dynamics of a damped harmonic oscillator are studied for different types of environment without making the Markovian approximation. The squeezing dynamics of a coherent state depend on the reservoir spectrum in a unique way that can, in the weak coupling approximation, be analyzed analytically. Comparison of squeezing dynamics for Ohmic, sub-Ohmic and super-Ohmic environments is done showing a clear connection between the squeezing--non-squeezing oscillations and reservoir structure. Understanding the effects occurring due to structured reservoirs is important both from a purely theoretical point of view and in connection with evolving experimental techniques and future quantum computing applications.Comment: 8 pages, 2 figures, submitted to Proceedings of CEWQO200

    Sudden transition between classical and quantum decoherence

    Get PDF
    We study the dynamics of quantum and classical correlations in the presence of nondissipative decoherence. We discover a class of initial states for which the quantum correlations, quantified by the quantum discord, are not destroyed by decoherence for times t < \bar{t}. In this initial time interval classical correlations decay. For t > \bar{t}, on the other hand, classical correlations do not change in time and only quantum correlations are lost due to the interaction with the environment. Therefore, at the transition time \bar{t} the open system dynamics exhibits a sudden transition from classical to quantum decoherence regime.Comment: version accepted for publication by Physical Review Letter

    Phenomenological memory-kernel master equations and time-dependent Markovian processes

    Get PDF
    Do phenomenological master equations with memory kernel always describe a non-Markovian quantum dynamics characterized by reverse flow of information? Is the integration over the past states of the system an unmistakable signature of non-Markovianity? We show by a counterexample that this is not always the case. We consider two commonly used phenomenological integro-differential master equations describing the dynamics of a spin 1/2 in a thermal bath. By using a recently introduced measure to quantify non-Markovianity [H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)] we demonstrate that as far as the equations retain their physical sense, the key feature of non-Markovian behavior does not appear in the considered memory kernel master equations. Namely, there is no reverse flow of information from the environment to the open system. Therefore, the assumption that the integration over a memory kernel always leads to a non-Markovian dynamics turns out to be vulnerable to phenomenological approximations. Instead, the considered phenomenological equations are able to describe time-dependent and uni-directional information flow from the system to the reservoir associated to time-dependent Markovian processes.Comment: 5 pages, no figure

    Local in time master equations with memory effects: Applicability and interpretation

    Full text link
    Non-Markovian local in time master equations give a relatively simple way to describe the dynamics of open quantum systems with memory effects. Despite their simple form, there are still many misunderstandings related to the physical applicability and interpretation of these equations. Here we clarify these issues both in the case of quantum and classical master equations. We further introduce the concept of a classical non-Markov chain signified through negative jump rates in the chain configuration.Comment: Special issue on loss of coherence and memory effects in quantum dynamics, J. Phys. B., to appea

    Decoherence in a quantum harmonic oscillator monitored by a Bose-Einstein condensate

    Full text link
    We investigate the dynamics of a quantum oscillator, whose evolution is monitored by a Bose-Einstein condensate (BEC) trapped in a symmetric double well potential. It is demonstrated that the oscillator may experience various degrees of decoherence depending on the variable being measured and the state in which the BEC is prepared. These range from a `coherent' regime in which only the variances of the oscillator position and momentum are affected by measurement, to a slow (power law) or rapid (Gaussian) decoherence of the mean values themselves.Comment: 4 pages, 3 figures, lette

    Non-Markovianity, Loschmidt echo and criticality: a unified picture

    Get PDF
    A simple relationship between recently proposed measures of non-Markovianity and the Loschmidt echo is established, holding for a two-level system (qubit) undergoing pure dephasing due to a coupling with a many-body environment. We show that the Loschmidt echo is intimately related to the information flowing out from and occasionally back into the system. This, in turn, determines the non-Markovianity of the reduced dynamics. In particular, we consider a central qubit coupled to a quantum Ising ring in the transverse field. In this context, the information flux between system and environment is strongly affected by the environmental criticality; the qubit dynamics is shown to be Markovian exactly and only at the critical point. Therefore non-Markovianity is an indicator of criticality in the model considered here

    Environment-dependent dissipation in quantum Brownian motion

    Get PDF
    The dissipative dynamics of a quantum Brownian particle is studied for different types of environment. We derive analytic results for the time evolution of the mean energy of the system for Ohmic, sub-Ohmic and super-Ohmic environments, without performing the Markovian approximation. Our results allow to establish a direct link between the form of the environmental spectrum and the thermalization dynamics. This in turn leads to a natural explanation of the microscopic physical processes ruling the system time evolution both in the short-time non-Markovian region and in the long-time Markovian one. Our comparative study of thermalization for different environments sheds light on the physical contexts in which non-Markovian dissipation effects are dominant.Comment: 10 pages, 6 figures, v2: added new references and paragraph

    New method to simulate quantum interference using deterministic processes and application to event-based simulation of quantum computation

    Full text link
    We demonstrate that networks of locally connected processing units with a primitive learning capability exhibit behavior that is usually only attributed to quantum systems. We describe networks that simulate single-photon beam-splitter and Mach-Zehnder interferometer experiments on a causal, event-by-event basis and demonstrate that the simulation results are in excellent agreement with quantum theory. We also show that this approach can be generalized to simulate universal quantum computers.Comment: J. Phys. Soc. Jpn. (in press) http://www.compphys.net/dl

    Dynamical typicality of quantum expectation values

    Full text link
    We show that the vast majority of all pure states featuring a common expectation value of some generic observable at a given time will yield very similar expectation values of the same observable at any later time. This is meant to apply to Schroedinger type dynamics in high dimensional Hilbert spaces. As a consequence individual dynamics of expectation values are then typically well described by the ensemble average. Our approach is based on the Hilbert space average method. We support the analytical investigations with numerics obtained by exact diagonalization of the full time-dependent Schroedinger equation for some pertinent, abstract Hamiltonian model. Furthermore, we discuss the implications on the applicability of projection operator methods with respect to initial states, as well as on irreversibility in general.Comment: 4 pages, 1 figure, accepted for publication in Phys. Rev. Let
    • …
    corecore