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Environment-dependent dissipation in quantum Brownian motion

J. Paavola, J. Piilo, K.-A. Suominen, and S. Maniscalco
Department of Physics and Astronomy, University of Turku, FI-20014 Turun yliopisto, Finland

�Received 17 February 2009; published 26 May 2009�

The dissipative dynamics of a quantum Brownian particle is studied for different types of environment. We
derive analytic results for the time evolution of the mean energy of the system for Ohmic, sub-Ohmic, and
super-Ohmic environments, without performing the Markovian approximation. Our results allow one to estab-
lish a direct link between the form of the environmental spectrum and the thermalization dynamics. This in turn
leads to a natural explanation of the microscopic physical processes ruling the system time evolution both in
the short-time non-Markovian region and in the long-time Markovian one. Our comparative study of thermal-
ization for different environments sheds light on the physical contexts in which non-Markovian dissipation
effects are dominant.

DOI: 10.1103/PhysRevA.79.052120 PACS number�s�: 03.65.Yz, 03.65.Ta

I. INTRODUCTION

The study of open quantum systems has recently received
renewed attention due to the importance of environment-
induced effects, such as quantum decoherence, both in the
fundamentals of quantum theory and in newly emerging
quantum technologies �1,2�. Quantum systems are never
completely isolated from their external environment. The in-
teraction between the system and its surroundings induces
decoherence phenomena destroying quantum superposition
and entanglement. Environment-induced decoherence has
been studied extensively for the damped harmonic-oscillator
model. In this context, the decoherence of a superposition of
Gaussian wave packets, a prototype of Schrödinger cat state,
has been studied theoretically and experimentally �3–7�.

Decoherence also plays a major role in quantum informa-
tion technologies since the coherence time typically deter-
mines the operational time of a quantum device, e.g., a quan-
tum logic gate. Understanding the dynamics of exemplary
quantum systems interacting with their environment is there-
fore of crucial importance for both fundamentals and appli-
cative aspects of quantum theory.

In this paper we investigate the dynamics of a damped
harmonic-oscillator or harmonic quantum Brownian motion
�QBM� model, interacting with different thermal bosonic en-
vironments. The QBM model is one of the few models of
open quantum systems amenable to an analytical solution
�1,2,8–24�.

A very general derivation of the nonlinear Langevin equa-
tions for a damped harmonic oscillator, for general micro-
scopic system-environment couplings, is given in Ref. �25�.
In the case of bilinear system-environment coupling the gen-
eralized exact master equation for the reduced system is
known as the Hu-Paz-Zhang master equation �13�. This mas-
ter equation is typically solved numerically. In some cases,
explicit solutions in closed form exist, e.g., for an initial
Gaussian wave packet or a superposition of Gaussian wave
packets �26�. In this paper we study the dynamics for the
initial Fock states of the harmonic oscillator and we use a
perturbative approach that nonetheless allows one to study
non-Markovian features due to structured environments. Our
aim is indeed to obtain simple analytical expressions in

closed form for the observables of interest in order to gain
insight in the fundamental microscopic processes ruling the
non-Markovian dissipative dynamics.

The QBM model is widely used in many physical con-
texts. Indeed it describes a quantum electromagnetic field
propagating in a linear dielectric medium �27�, a particle
interacting with a quantum field in dipole approximation �19�
and a single trapped ion subjected to artificial colored noise
�22�. In addition to these quantum optical applications, the
QBM model is used in nuclear physics �28� and quantum
chemistry �29�. For this reason the literature on this model is
vast and crosses several fields of science. Interesting results
have recently led to a better understanding of anomalous
diffusion for the free QBM model, i.e., in the absence of a
trapping potential �30�. The dynamics of an initial Gaussian
state in an anharmonic potential have also been studied �31�.

The Hu-Paz-Zhang master equation has recently been
used to study the entanglement dynamics of initial coherent
and twin-beam states of two noninteracting harmonic oscil-
lators linearly coupled to common �32–34� or independent
structured reservoirs �35,36�. For independent reservoirs the
entanglement dynamics for initial non-Gaussian states was
presented in �37�. The non-Markovian dynamics of entangle-
ment for two coupled harmonic oscillators was investigated
in �38� for different types of environment. Very recently
strategies of optimal decoherence control have been demon-
strated for non-Markovian two-level systems �39�. We focus
in this paper on a system that is more complicated than a
two-state system, i.e., a single-quantum harmonic oscillator,
but it would certainly be of interest to extend the optimal
control analysis to systems with a nonfinite Hilbert space.

In this paper we use a time-convolutionless perturbative
master equation that does not rely on the Markovian approxi-
mation and can therefore describe situations in which the
spectrum of the environment has a structure. This is, e.g., the
case of atom lasers �40� or atoms decaying in photonic band-
gap materials �41�. By specifying the form of the spectrum
we obtain analytical expressions for the mean energy of the
system in a close form. In this way we can establish a clear
connection between the reservoir spectral properties and the
non-Markovian dynamics of the quantum Brownian particle.

The coupling between the system and the quantized oscil-
lators constituting the bosonic reservoir is given, in the con-
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tinuum limit, by the reservoir spectral density. Different
physical contexts are characterized by different forms of the
reservoir spectrum. The three main classes typically consid-
ered in the literature are the so-called Ohmic, sub-Ohmic,
and super-Ohmic spectra. We will compare the thermaliza-
tion process for these three types of reservoirs.

It is worth mentioning that recent advances in reservoir
engineering techniques �6� pave the way to experiments
aimed at simulating paradigmatic models of open quantum
systems as the one considered in this paper. In the trapped-
ion context, e.g., the simulation of a QBM model for an
Ohmic environment has been proposed in Refs. �22,42�. The
same method can be extended straightforwardly to simulate
the sub-Ohmic and super-Ohmic environments considered
here. These experiments would allow one to test in a con-
trolled way a fundamental and ubiquitous model such as
QBM. Understanding which type of environment leads to the
faster or slower decoherence and/or dissipation dynamics can
be of great importance in the choice of the physical system
for implementing realistic quantum devices such as a quan-
tum computer.

This paper is structured in the following way. In Sec. II
we introduce the model under study and the master equation
describing the dynamics. Section III introduces the three dif-
ferent exemplary reservoirs, namely, the Ohmic, sub-Ohmic,
and super-Ohmic reservoirs, used in our comparative study.
In Secs. IV and V we discuss our results for the decay rates
and heating dynamics of the QBM model. Finally, in Sec. VI
we present conclusions and outline possible future prospects.

II. MASTER EQUATION FOR QBM

Let us consider a quantum particle of mass m moving in a
harmonic potential. The Hamiltonian of the system is

HS = �0�a†a +
1

2
� , �1�

where a and a† are the creation and annihilation operators of
the quantum harmonic oscillator, �0 is the frequency, and �
is set to 1. The environment is a heat bath modeled as an
infinite chain of harmonic oscillators,

HE = �
n=0

�

�n�bn
†bn +

1

2
� , �2�

where bn and bn
† are the creation and annihilation operators,

respectively, and �n is the frequency of the nth oscillator.
The system and the reservoir are coupled linearly via the
position operators, X�a+a† and xn�b+b† for the system
and reservoir oscillators, respectively, so that the interaction
Hamiltonian is given by

HI =
1
�2

�a + a†��
n

kn�bn + bn
†� , �3�

where kn measures the coupling between each reservoir
mode and the system oscillator.

A master equation describing the QBM dynamics can be
derived starting from the total Hamiltonian

H = HS + HE + �HI, �4�

where � is a dimensionless constant proportional to the
strength of the coupling between the system and the environ-
ment. In the weak coupling limit �i.e., when ��1�, assuming
initially factorized state ��=�S � �E� and a thermal reservoir,
we obtain the following secularly approximated master equa-
tion for the damped harmonic oscillator �1�:

d

dt
�S�t� =

��t� − 	�t�
2

�2a†�Sa − aa†�S − �Saa†�

+
��t� + 	�t�

2
�2a�Sa† − a†a�S − �Sa†a� , �5�

where

��t� = 2	
0

t

dt�	
0

�

d� J���
N��� +
1

2
�cos��t��cos��0t�� ,

�6�

	�t� = 2	
0

t

dt�	
0

�

d�
J���

2
sin��t��sin��0t�� . �7�

In the equation above N���= �e�/kBT−1�−1 is the average
number of reservoir thermal excitations, with kB as the Bolt-
zmann constant and T as the reservoir temperature, and J���
is the spectral density of the environment defined, in the
continuum limit, as

J��� = �2�
n

kn
2

mn�n

�� − �n� , �8�

with mn as the masses of the environmental oscillators. In
deriving the master equation no Markovian approximation
has been done. The memory effects are included in the time-
dependent coefficients ��t� and 	�t�. The latter term is
known as the dissipation coefficient and gives rise to a clas-
sical damping term that is not dependent on temperature. The
former term ��t� is known as the diffusion coefficient and is
directly proportional to the reservoir temperature �1�.

It is worth mentioning here that performing a secular ap-
proximation does not affect the non-Markovian short-time
dynamics of certain observables in the weak-coupling limit
�16�. In this paper we focus on the dynamics of one of such
observables, namely, the heating function.

III. MODELING DIFFERENT TYPES OF RESERVOIRS

We now introduce a class of spectral densities in order to
compare the QBM dynamics for different types of reservoirs.
The spectral densities we examine are of the form

J��� = �2�c
1−s�se−�/�c. �9�

The exponential cutoff is introduced to eliminate divergences
in the �→� limit. We have compared various types of cutoff
functions and concluded that their different analytical forms
do not play a major role in the dynamics of QBM. For the
sake of simplicity we therefore focus, in the rest of the paper,
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on the exponential cutoff. The parameter s appearing in Eq.
�9� is a constant that can acquire values of �1, 1, or �1,
corresponding to the so-called sub-Ohmic, Ohmic, and
super-Ohmic spectral densities, respectively. In this paper we
consider some examples and fix the value of s to 1/2, 1, and
3. The three cases have different physical interpretations.
The Ohmic spectrum �s=1� gives, for QBM, a frictionlike
force that is proportional to velocity. The Ohmic spectrum
can be used, e.g., to describe charged interstitials �conductive
electrons� in metals �2�. The super-Ohmic spectral density
�s=3� corresponds to, e.g., a phonon bath in one or three
dimensions, depending on the symmetry properties of the
strain field �2�. It is also possible to show that this type of
environment can be used in describing the effect of the in-
teraction between a charged particle and its own electromag-
netic field �43�. The sub-Ohmic spectral density �s=1 /2� cor-
responds to the type of noise that may occur in some solid-
state devices and, in the high-T case, is similar to the “1 / f
noise” in Josephson junctions �44�.

We introduce the spectral distribution given by

I��� = J���
N��� +
1

2
� . �10�

This quantity contains all the information needed, in the
weak-coupling limit, about the reservoir, i.e., the density of
modes and the occupancy of each mode. The spectral distri-
bution depends on the temperature of the reservoir through
the average number of reservoir thermal excitations N���. At
high temperatures T we can approximate N����kBT /�
while at zero temperature N���=0. In the rest of the paper
we discuss the QBM dynamics in these two temperature re-
gimes.

A relevant parameter in the description of QBM is the
resonance parameter r defined as the ratio between the cutoff
frequency �c and the frequency of the system oscillator �0,
i.e.,

r =
�c

�0
. �11�

We consider three exemplary values of the resonance param-
eter, namely, r equal to 0.1, 1, and 10. The r=0.1 case is
characterized by the fact that the effective coupling between
the system oscillator and the environment is very small for
all the three reservoir types because the system oscillator is
detuned from the peak of the reservoir spectral distribution.
We call this the off-resonant case. The Ohmic and sub-
Ohmic reservoirs are such that the effective coupling be-
tween the system and the reservoir becomes stronger when r
grows from 0.1 to 10. The super-Ohmic reservoir, on the
contrary, shows the highest effective coupling for r=1, while
the r=0.1 and r=10 cases correspond to relatively weak cou-
plings. Plots of the spectral distribution for different values
of r in the high- and zero-temperature limits are shown in
Figs. 1 and 2.

The spectral distribution at high temperatures, given by

I��� = �2kBT� �

�c
�s−1

e−�/�c, �12�

is shown in Fig. 1. The sub-Ohmic spectrum has a diver-
gency point at �=0. This causes large effective coupling
induced by the low-frequency part of the spectral density. An
opposite example can be found for the super-Ohmic reser-
voir, where the peaks of the spectrum in the cases r=1 and
r=10 lie in the higher-frequency range.

The spectral density for reservoirs with T=0, given by

I��� =
�2

2
�c

1−s�se−�/�c, �13�

is shown in Fig. 2 �the plots here are grouped according to
parameter r for clarity�. A key difference with respect to the
high-temperature case is that at zero temperature, the sub-
Ohmic spectrum does not diverge in zero anymore.
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FIG. 1. �Color online� Spectral distributions of different reser-

voirs at high temperatures. Here Ī= I / ��2kBT� and �̄=� /�0. For
each spectral curve the location of the cutoff frequency is given by
�̄c=�c /�0=r. The location of the oscillator frequency has been
marked with a solid vertical line.
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As we will see in Secs. IV and V, the QBM heating dy-
namics depends crucially on the different form of the spec-
tral distributions in the Ohmic, sub-Ohmic, and super-Ohmic
cases. Our main goal is to establish a clear connection be-
tween the reservoir properties and the dynamics of both the
decay rate and the heating function, as done, for an Ohmic
reservoir with Lorentzian cutoff, in Ref. �42�. In this way we
will be able to motivate from a physical point of view the
origin of the different QBM dynamics for different reser-
voirs, and therefore in different physical contexts.

IV. DECAY RATES

The front factors ���t�+	�t�� /2 and ���t�−	�t�� /2 in the
master Eq. �5� represent the relaxation rates for the two de-
cay channels of the QBM model. In the Fock state basis the
former rate is associated to 
n�→ 
n−1� transitions, i.e., to
the transfer of one excitation from the system to the environ-
ment. The latter rate corresponds to 
n�→ 
n+1� transitions,
i.e., it describes the absorption of one excitation from the

environment. These transitions, describing heating or cooling
of the quantum harmonic oscillator due to the interaction
with the external environment, destroy the quantum coher-
ence of initial superpositions.

After a certain reservoir-dependent time, the decay rates
reach their constant positive Markovian values,

�M = 
I��0� , �14�

	M =



2
J��0� . �15�

The decay rates can also temporarily attain negative values.
When this happens, the corresponding decay channel has
been shown to operate in a reverse way, i.e., the down chan-
nel actually induces heating and vice versa �45�. We will now
examine the decay rates in non-Markovian time scales at
high and zero temperatures.

A. High temperatures

At high temperatures ��t��	�t�, and for time scales
much shorter than the thermalization time, both the transition
up and down channels operate at approximately the same
rate ��t� /2. We have obtained an analytic expression for

�̄�t�=��t� / ��kBT� for all the three types of environment con-
sidered in this paper. More precisely, for the Ohmic environ-
ment we obtain

�̄�t� = − i cosh�1

r
�
ci� z

r
� − ci� z + 2t

r
��

+ sinh�1

r
�
si� z

r
� − si� z + 2t

r
�� , �16�

and for the super-Ohmic environment,

�̄�t� =

4t cos� t

r
�

�1 + t2�2 −

2 sin� t

r
�

r + rt2

+
1

r2�− i cosh� t

r
�
ci� z

r
� − ci� z + 2t

r
�� + sinh� t

r
�

�
si� z

r
� − si� z + 2t

r
��� , �17�

where z= i− t, and ci�x� and si�x� are the cosine and sine
integrals defined as ci�x�=−�x

� cos�x�
x dx and si�x�=−�x

� sin�x�
x dx.

Finally, the decay rate for the sub-Ohmic environment is

�̄�t� = −
2
e−1/r

�2i − 2t�1 + t2�1/4�1

4
+

i

4
��r�1 + it�

�1 + t2

���1 + t2 erf�z−� − ie2/r�1 + t2 erf�iz−�

+ i�z�z + 2t�erf�z+� − ie2/r erf�iz+��� , �18�

where z�= ��1+ i��i� t� /�2r and erf�x�= 2
�


�0
ze−t2dt.

From the analytic expressions of the diffusion coefficient

�̄�t� one can show that such a quantity oscillates, taking
temporarily negative values for r�1 for all reservoir types.
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FIG. 2. �Color online� Spectral distributions at zero temperature

grouped according to the resonance parameter r. Here Ī
=2I / ��2�0� and �̄=� /�0. The vertical dotted-dashed line is the
location of the cutoff frequency �̄c=�c /�0.
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The origin of these oscillations can be traced back to the
form of the spectral distribution. Figure 1 shows that, e.g.,
for r=0.1 most part of the spectrum is located in a region of
the frequency space such that ���0. Figure 3 shows the

oscillatory behavior of �̄�t� for this value of r. As r grows,
the spectrum starts to overlap with �0. We note that, in the
case of the sub-Ohmic environment, the diffusion coefficient
presents oscillations for all values of r, but it attains negative
values only when r�1.

The Markovian value of the diffusion coefficient ��t� is
proportional to I��0� �see Eq. �14��. As one can see in Fig. 1,
for r=10 the highest value of �M corresponds to the sub-
Ohmic environment while in the off-resonant r=0.1 case, �M
is small for all reservoir types.

B. Zero temperature

When the system oscillator interacts with a zero-
temperature reservoir, the Markovian theory predicts that en-
ergy is transferred from the system to the environment, i.e.,
the oscillator is driven toward its ground state. Our non-
Markovian theory, however, shows that for times �ct�1, the
average energy of the system oscillator may increase, as we
will see in detail in Sec. V. This is due to the form of the

interaction Hamiltonian, given by Eq. �3�, containing four
terms characterizing the emission and absorption processes,
namely, abn, abn

†, a†bn, and a†bn
†. The two terms in the

middle correspond to real processes conserving the unper-
turbed energy, while the other two are known as the counter-
rotating terms. These terms describe the simultaneous cre-
ation or annihilation of a quantum of energy both in the
system and in the reservoir oscillators. The energy required
for such processes to occur comes from the system-reservoir
coupling. By combining these two counter-rotating terms, we
obtain a process that corresponds to an energy-conserving
process. It has been shown that at zero temperature the dy-
namics of the decay rate for the transition up originates from
these counter-rotating terms �17�.

The decay rates at zero temperature show similar depen-
dence on the parameter r as the one discussed in the high-
temperature case. In particular, for r�1 both ��t�+	�t� and
��t�−	�t� oscillate, attaining negative values, a clear signa-
ture of the non-Markovian behavior of the system. Compared
to the high-T case, oscillations in ��t�−	�t� obtaining nega-
tive values are present also for higher values of r, e.g., r=1,
for all reservoir types. For the super-Ohmic environment the
decay rates show a strong initial jolt for all the values of r.
Having in mind the form of the spectral distributions one
sees that the initial jolt is present whenever the peak of the
spectrum lies in the frequency region ���c.

For �ct�1 the decay rate ��t�−	�t�, describing 
n�→ 
n
+1� transitions in the system oscillator, approaches zero as
expected from the Markovian theory, while ��t�+	�t�, de-
scribing 
n+1�→ 
n� transitions, reaches a constant positive
value �M +	M =
I��0�, as shown in Fig. 4 for the r=10 case.

An interesting aspect worth mentioning is visible in the
super-Ohmic case for r=10. Figure 4 clearly shows that for
the super-Ohmic spectrum the decay rate ��t�+	�t�, i.e., the
cooling rate of the system oscillator, approaches its small but
nonzero constant value already for �ct�3, while at the same
time the decay rate ��t�−	�t�, describing the heating of the
system oscillator, attains a negative value and tends to zero
while remaining negative.

It has been shown in Ref. �45� that in correspondence to
negative regions of the time-dependent coefficients, in our
case ��t��	�t�, reverse transitions restoring the previous
quantum state occur. In view of these results one can argue
that, in the case considered above, the up channel acts like a

Ohmic
super-Ohmic
sub-Ohmic

FIG. 3. Decay rates at high temperatures for different types of

reservoir in the non-Markovian time scales. Here �̄=� / �2�2kBT�
and r=0.1
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transition down channel. This implies that the thermalization
is achieved via a reverted transition up channel, while the
actual transition down channel is almost completely closed.
In Sec. V we will see how the behavior of the decay rates is
related to the heating dynamics of the quantum Brownian
particle, and we will investigate the differences in the dy-
namics of the mean energy of the system due to different
environments.

V. HEATING OF A QUANTUM BROWNIAN PARTICLE

A. Markovian thermalization dynamics

The QBM dissipative dynamics can be described by
means of the heating function, defined as

�n� = a†a . �19�

The analytical expression for the heating function is given by
�18,46�

�n�t�� = e−��t��n�0�� +
1

2
�e−��t� − 1� + ���t� , �20�

where ��t� and ���t� are defined as

��t� = 2	
0

t

	�t1�dt1, �21�

���t� = e−��t�	
0

t

e��t1���t1�dt1. �22�

In the following we focus on the case where the oscillator is
initially in the ground state, i.e., �n�0��=0, and perform a
comparative study of the heating function dynamics for dif-
ferent reservoir structures.

We begin by looking at the Markovian dynamics describ-
ing the time evolution for times much greater than the reser-
voir correlation time. The Markovian expression of the heat-
ing function �n�t��M is obtained inserting the Markovian
expressions of the diffusion and dissipation coefficients,
given by Eqs. �14� and �15�, into Eqs. �20�–�22�,

�n�t��M = N��0��1 − e−�t� , �23�

where �=2	M =
J��0�. From Eqs. �9� and �15� we can ex-
press the reservoir thermalization time, in units of �0, as
follows:

tth = �0/� = �
�2�−1rs−1e1/r. �24�

In Fig. 5 we see that, for both the sub-Ohmic and the
Ohmic reservoirs, the thermalization time decreases mono-
tonically for increasing values of r, i.e., for increasing values
of the cutoff frequency with respect to the frequency of the
system oscillator �0. On the contrary, for the super-Ohmic
reservoir, there exist a value of r, namely, r�0.5, minimiz-
ing the thermalization time. In general, all the three reservoir
types considered in this paper are such that the thermaliza-
tion time grows rapidly when r→0, and correspondingly the
thermalization process is notably slowed down. Our analysis
suggests that by appropriately changing the cutoff frequency

of a high-temperature engineered reservoir, it is possible to
control the thermalization dynamics.

B. Non-Markovian heating

We now look at the non-Markovian short-time dynamics
of the heating function. For times much smaller than the
thermalization time, Eq. �20� can be approximated by

�n�t�� = 	
0

t

���t1� − 	�t1��dt1. �25�

This equation establishes a clear connection between the
heating function dynamics and the time-dependent decay rate
��t�−	�t� corresponding to transitions increasing the system
oscillator energy, i.e., absorption of quanta from the environ-
ment. This is clearly related to our choice of the initial con-
dition �n�0��=0. In this case indeed, for times much shorter
than the thermalization time, the absorption of a quantum of
energy from the environment �heating� dominates over the
opposite process, i.e., the emission of a quantum of energy
into the environment �cooling�.

1. High temperatures

For high-temperature reservoirs, Eq. �25� can be further
approximated by �47�

�n�t�� � 	
0

t

��t1�dt1. �26�

The sign of ��t� determines whether the heating function
grows monotonically or exhibits an oscillatory behavior. In
more detail, when ��t� oscillates taking negative values, the
heating function oscillates.

The oscillations in the heating function appear when the
system gives back to the reservoir some of the energy that
had previously been absorbed from it. In other words, the
direction of the energy flow is reversed during the time pe-
riods in which the slope of �n�t�� is negative. These oscilla-
tions are a sign of the non-Markovian dynamics and are due
to the finite reservoir memory that allows the partial and

Ohmic
super-Ohmic
sub-Ohmic

~

FIG. 5. Thermalization times for different reservoirs. Here t̃th

=
�2tth.
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temporary recovery of some of the information and/or energy
lost in the reservoir.

Equation �26� links the heating function to the diffusion
coefficient dynamics. In Sec. IV A we have seen how the
structure of the reservoir, and in particular some specific
system-reservoir parameters, determine the temporal behav-
ior of ��t�. By means of Eq. �26� we can now establish a
connection between the reservoir spectrum and the heating
process and compare the non-Markovian heating for the sub-
Ohmic, Ohmic, and super-Ohmic reservoirs.

In Fig. 6 one sees clearly that the non-Markovian heating,
described by Eq. �26�, presents two main types of behavior:
an oscillatory behavior and a monotonic growth similar to
the Markovian heating. In Ref. �42� it was demonstrated that
for an Ohmic reservoir and for r=0.1, oscillations in �n�t��
originate from the low-frequency part of the spectrum while
the monotonic heating is caused by the resonant part of the
spectrum, namely, by the value of I��0�.

This connection between the features of �n�t�� and the
spectrum seems to hold also for the three reservoir types
discussed in this paper. Indeed, for r�1 the decay rates ��t�
are always positive, giving rise to monotonic heating. More-
over the bigger the value of I��0�, the faster the non-
Markovian monotonic heating rate. For r=1, e.g., the mono-
tonic heating occurs at approximately the same rate for all
the reservoir types corresponding to the fact that I��0� is the
same for all the reservoirs.

The connection between the low frequencies of the spec-
trum and oscillations in the heating dynamics can be illus-
trated by considering the cases where oscillations are
present, i.e., for r�1. This is the parameter region where
��t� obtains temporarily negative values giving rise to oscil-
lations in �n�t��. For these values of r the peaks of all the
three spectral distributions are positioned in the low-
frequency region, indicating that the presence of oscillations
and the low-frequency part of the spectrum are intertwined.

Oscillations in �n�t�� mark the presence of non-Markovian
memory effects. The persistence of non-Markovian effects
for a given value of r �e.g., r�1 for high-T reservoirs� de-
pends on the type of reservoir spectrum. Figure 6 shows that
the memory effects persist for much longer times in the sub-
Ohmic reservoir than in the other reservoir types. This indi-
cates that when dealing with sub-Ohmic reservoirs, a non-
Markovian approach might also be needed at time scales
where, for the Ohmic and super-Ohmic environments, a Mar-
kovian treatment is sufficient.

We have now illustrated the main features of the non-
Markovian heating dynamics of QBM for high temperatures.
In Sec. V B 2 we will briefly summarize the corresponding
results for the zero-temperature case.

2. Low temperatures

When the system oscillator, initially prepared in its
ground state, interacts with a zero-temperature reservoir, the

Ohmic, r=0.1

Ohmic, r=1

Ohmic, r=10

super-Ohmic, r=0.1

super-Ohmic, r=1

super-Ohmic, r=10
sub-Ohmic, r=10

sub-Ohmic, r=1

000000

00

sub-Ohmic, r=0.1

0000 00

0000

FIG. 6. Short-time dynamics of the heating function for different high-temperature reservoirs. In the plots �=0.01 and we have set
kBT

��0
=100.
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dynamics of the heating function is basically due to the fi-
nite, although small, system-reservoir coupling energy. At
zero temperatures, and for short times, the heating function
dynamics is linked to the decay coefficient ��t�−	�t� via Eq.
�25�.

The non-Markovian dissipative dynamics of QBM at zero
T is qualitatively similar to the one shown in Fig. 6 for
high-T reservoirs. As discussed in Sec. IV B, the coefficient
��t�−	�t�, associated to the heating rate of the system oscil-
lator, tends to zero for times much greater than the reservoir
correlation time, as expected from the Markovian theory. Af-
ter the initial non-Markovian heating, the system will even-
tually thermalize with the zero-temperature reservoir.

Similarly to the case of high-T reservoirs, also at low
temperatures, oscillations in �n�t�� vanish as r becomes �1.
Now, however, this typically non-Markovian feature is
present for greater values of r than in the high-T case, e.g.,
also for r=1. The fact that non-Markovianity is present for a
wider range of r, in the case of a zero-temperature reservoir,
is in agreement with what is found in Ref. �18� for an Ohmic
reservoir with the Lorentz-Drude cutoff.

VI. CONCLUDING REMARKS AND FUTURE PROSPECTS

In this paper we have presented analytical results on the
dynamics of a quantum Brownian particle interacting with
different types of bosonic thermal reservoirs. Our approach
makes it possible to identify in a clear way the microscopic
physical processes taking place at short non-Markovian
times scales and to link them to the spectral properties of the
environment. By comparing the effects that different types of
environments have on the quantum system, we can identify
those physical contexts where a non-Markovian approach is
required in the description of the time evolution. Moreover
we can predict the type of reservoir that perturbs less the
quantumness of the system of reference, in our case the har-
monic oscillator, and the value of the parameters for which
this occurs. We have seen indeed that the decay and heating
rates for the QBM depend strongly on the reservoir type, and
in particular on the ratio r between the cutoff frequency �c
and the frequency of the system oscillator �0.

The time-dependent coefficients appearing in the master
equation and in the heating function are connected via Eqs.
�25� and �26� for both zero and high-T reservoirs. The heat-
ing dynamics for both temperature regimes shows a similar
dependence on the parameter r. In general oscillations in the
heating function, a typical non-Markovian feature, are
present for r�1. For zero temperatures, however, these os-
cillations are also present for r�1. So for all the types of
environment considered, zero-T reservoirs are inherently
more non-Markovian than high-T reservoirs. Moreover, we
demonstrated that the sub-Ohmic reservoir induces more
pronounced and longer lasting non-Markovian dynamics
compared to the other reservoir types and gives rise to a
faster Markovian heating in the resonant case �r=10�.

The oscillations in �n�t�� indicate a back-and-forth ex-
change of energy between the system and the reservoir. In
particular, when the slope of �n�t�� is negative, the system
gives back some of the excitations received previously from

the reservoir. The statistical ensemble of system oscillators
is, in general, colder than the reservoir with whom it inter-
acts, since we assumed throughout the paper that the system
is prepared in its ground state. Oscillations in the heating
function therefore indicate the possibility of a temporary en-
ergy flow from a cooler object to a hotter one due to the
memory of the environment.

This is not a surprise. The monotonic evolution of the
system density operator to its equilibrium value, which is a
universal property of quantum dynamical semigroups
�Spohn’s theorem� �48�, is in general violated at short �non-
Markovian� time scales. This anomaly has been proposed to
be used to control the thermodynamics of an atomic system
simply by changing the way in which it is measured �49�.

Our results indicate that by means of reservoir engineer-
ing techniques, e.g., by changing the parameter r, one could
modify the thermalization dynamics of the system. Another
intriguing possibility stemming from reservoir engineering is
the simulation of paradigmatic models of open quantum sys-
tems as the one discussed in this paper. Schemes for simu-
lating QBM with trapped ions were presented in Refs.
�22,42�. A similar approach may be used to simulate the
sub-Ohmic and super-Ohmic environments investigated here.

An ideal physical context where our results could be ex-
perimentally verified is the trapped-ion context. Experiments
with single trapped ions have demonstrated the ability to
engineer artificial environments and to control the relevant
system-environment parameters �6�. These experiments aim
at measuring the decoherence of a quantum superposition of
coherent states and Fock states due to the presence of the
reservoir. Several types of engineered reservoirs are demon-
strated, e.g., thermal amplitude reservoirs, phase reservoirs,
and zero-temperature reservoirs �6�.

A high-T amplitude reservoir is obtained by applying a

random electric field E� whose spectrum is centered on the
axial frequency �z of oscillation of the ion. The trapped-ion
motion couples to this field due to the net charge q of the ion,

Hint=−qx� ·E� , with x� = �X ,Y ,Z� displacement of the c.m. of

the ion from its equilibrium position. Remembering that E�

��i��i�bi+bi
†�, with bi and bi

† as the annihilation and creation
operators of the fluctuating field modes, and that X� �a
+a†�, the quantized position operator of the ion motion, one
realizes that this coupling is equivalent to the bilinear one
given in Eq. �3�.

The random electric field is applied to the end cap elec-
trodes through a network of properly arranged low-pass fil-
ters limiting the “natural” environmental noise but allowing
deliberately large applied fields to be effective. This type of
drive simulates an infinite-bandwidth amplitude reservoir
�6�. It is worth stressing that for the times of duration of the
experiment, the heating due to the natural reservoir is defini-
tively negligible �6�.

The different high-T spectra that we discuss in this paper
can be realized experimentally by filtering the random field,
used in the experiments for simulating an infinite-bandwidth
reservoir, with a suitable set of bandpass filters. This enables
the comparison of the heating rates between different reser-
voir spectra and the observation of non-Markovian effects.
We notice that measurements of the heating function are rou-
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tinely performed in the trapped-ion context. The heating
function is obtained from measurements of the population of
the vibrational states of the ion. A detailed study of the ex-
perimental techniques to simulate harmonic quantum Brown-
ian motion with trapped ions, for the case of an Ohmic spec-
trum with the Lorentz-Drude cutoff, has been performed in
Ref. �22�. We believe the methods needed to verify these
phenomena are already in the grasp of the experimentalists
�22,42�.

Finally, it is worth recalling that the manipulation of the
dynamics via certain types of measurements causes the decay
processes to be inhibited or accelerated, depending on the
system-reservoir properties. These crucially quantum phe-
nomena, known as quantum Zeno effect �QZE� and anti-
Zeno effect �AZE�, have been studied for the QBM model in
the case of an Ohmic spectrum in Ref. �50�.

The results presented in this paper pave the way to the
study of the influence of the reservoir spectrum on the oc-
currence of QZE or AZE. The borderline between the occur-
rence of QZE and AZE is indeed related to the spectral prop-
erties of the environment and therefore will depend on the
type of reservoir �Ohmic, sub-Ohmic, super-Ohmic� consid-
ered. A comparative study of the Zeno-anti-Zeno crossover is
thus a natural follow up of this paper.
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