16 research outputs found

    Thin supported MOF based mixed matrix membranes of Pebax® 1657 for biogas upgrade

    Get PDF
    This work shows the preparation of thin mixed matrix membranes (MMMs) with a 2-3 µm thick Pebax® 1657 layer on two different supports: a porous asymmetric polyimide P84® and dense polytrimethylsilylpropyne (PTMSP). Nanoparticles of metal-organic frameworks (MOFs) ZIF-8, MIL-101(Cr), UiO-66 and ZIF-7/8 core-shells were selected as fillers for the Pebax® 1657 based MMMs, all of them being MOFs with high CO2 adsorption capacity but different pore size distribution. All the membranes were characterized by SEM, FTIR, Raman, TGA and XRD analyses, showing in all cases a perfect compatibility of the Pebax® layer with both supports and also a good dispersion of the fillers in the polymeric matrix. These membranes were applied for the separation of equimolar CO2/CH4 mixtures at 35 °C under feed pressures between 3 and 5 bar, where an improvement in the gas separation performance with increasing pressure was noticed, thanks to the favored solubility of CO2. The synergistic compatibility between Pebax® 1657 and P84® gave rise to a 470% enhancement in CO2/CH4 selectivity, reaching a maximum value of 114 while the CO2 permeance increased by 40% up to 7.5 GPU. The addition of fillers in the Pebax® polymeric phase produced an improvement in the gas separation performance of the membranes, especially in terms of permeance, where the MMMs containing a 10 wt% loading of UiO-66 reached the optimum value of 11.5 GPU of CO2 (together with a CO2/CH4 selectivity of 55.6)

    Nanosheets of MIL-53(Al) applied in membranes with improved CO 2 /N 2 and CO 2 /CH 4 selectivities

    Get PDF
    MIL-68(Al) and MIL-53(Al) are carboxylate-based metal-organic frameworks (MOFs) with the same chemical composition but different structures (polymorphs). In this study, MIL-53(Al) nanosheets of ca. 150 nm in size with an average thickness of 3.5 ± 0.9 nm were obtained after immersion of a sample composed of MIL-68(Al) and MIL-53(Al) in water under different conditions (ultrasound, stirring, reflux, 60 °C and room temperature). The disaggregated MIL-53(Al) nanosheets produced under more severe conditions were suspended in a PDMS solution and then deposited on asymmetric polyimide P84® supports under vacuum filtration to form supported mixed matrix membranes (MMMs). When applied to the separation of CO 2 /CH 4 and CO 2 /N 2 mixtures, the MMM with MIL-53(Al) nanosheets improved the CO 2 /CH 4 (28.4-28.7 vs. 22.4) and CO 2 /N 2 (19.9-23.2 vs. 17.5) selectivities of the conventional MIL-53(Al) MMM with higher CO 2 permeances (20.8-29.6 GPU vs. 9.5 GPU for CO 2 /CH 4 and 17.7-26.8 GPU vs. 11.2 GPU for CO 2 /N 2 )

    Tuning the separation properties of zeolitic imidazolate framework core-shell structures via post-synthetic modification

    Get PDF
    The conversion of ZIF-8 into ZIF-7 via post-synthetic modification with benzimidazole has been monitored by quantifying the liberated 2-methylimidazole by chromatography. The reaction kinetics have been adjusted to the shrinking core model, providing the diffusion coefficient of bIm inside the pores and the reaction kinetic constant (2.86 × 10-7 cm2 s-1 and 1.36 × 10-4 cm s-1, respectively). A wide variety of ZIF-7/8 hybrid core-shell frameworks have been obtained during this reaction. The most promising have been characterized by SEM/TEM, TGA, N2 and CO2 adsorption, FTIR and 13C NMR, showing features of the coexistence of both phases inside the frameworks. Their structures have also been simulated, providing comparable XRD and adsorption results. The hybrid material has been used as a filler for PBI mixed matrix membranes (MMMs) applied to H2/CO2 separation, enhancing the performances of the bare PBI polymer and MMMs containing ZIF-8 or ZIF-7 as a filler, with a maximum H2 permeability value of 1921 Barrer and a H2/CO2 selectivity of 11.8

    Hydrogen Separation at High Temperature with Dense and Asymmetric Membranes Based on PIM-EA(H2)-TB/PBI Blends

    Get PDF
    The preparation of dense and asymmetric flat membranes from the blending of polybenzimidazole (PBI) and (1.5-20 wt %) of a polymer of intrinsic microporosity (PIM-EA(H2)-TB) is reported. Thermal characterization validated the blend by revealing a single glass transition temperature, which suggests the absence of polymer phase segregation. In addition, the decomposition activation energy and d-spacing of the blends follow trends that correlate with the amount of PIM component. The membranes have been tested for the separation of H2/CO2 mixtures. The properties of the dense membranes, which also incorporate zeolitic imidazolate-8 (ZIF-8) nanoparticles, helped understanding of the behavior of the PIM/PBI blends by which phase inversion results in high separation performance asymmetric membranes. Asymmetric membranes show H2/CO2 selectivities of 23.8 (10/90 wt % PIM/PBI) and 19.4 (20/80 wt % PIM/PBI) together with respective H2 permeances of 57.9 and 83.5 GPU at 250 °C and 6 bar feed pressure. The gas separation performance of these asymmetric blends has been fitted to an empirical model, showing the influence of the amount of PIM and the feed pressure

    "Razne vijesti"

    Get PDF
    The present work shows the synthesis of nano-sized hybrid zeolitic imidazolate frameworks (ZIFs) with the rho topology based on a mixture of the linkers benzimidazole (bIm) and 4-methyl-5-imidazolecarboxaldehyde (4-m-5-ica). The hybrid ZIF was obtained by post-synthetic modification of ZIF-93 in a bIm solution. The use of different solvents, MeOH and N, N-dimethylacetamide (DMAc), and reaction times led to differences in the quantity of bIm incorporated to the framework, from 7.4 to 23 % according to solution-state NMR spectroscopy. XPS analysis showed that the mixture of linkers was also present at the surface of the particles. The inclusion of bIm to the ZIF-93 nanoparticles improved the thermal stability of the framework and also increased the hydrophobicity according to water adsorption results. N2 and CO2 adsorption experiments revealed that the hybrid material has an intermediate adsorption capacity, between those of ZIF-93 and ZIF-11. Finally, ZIF-93/11 hybrid materials were applied as fillers in polybenzimidazole (PBI) mixed matrix membranes (MMMs). These MMMs were used for H2/CO2 separation (at 180 °C) reaching values of 207 Barrer of H2 and a H2/CO2 selectivity of 7.7 that clearly surpassed the Robeson upper bound (corrected for this temperature)
    corecore