3,960 research outputs found

    Attentional preparation for a lateralized visual distractor: Behavioral and fMRI evidence

    Get PDF
    Attending to the location of all expected visual target call lead to anticipatory activations In spatiotopic occipital cortex, emerging before target onset. But less is known about how the brain may prepare for a distractor at a known location remote from the target. In a psychophysical experiment, we found that trial-to-trial advance knowledge about the presence of a distractor in the target-opposite hemifield significantly reduced its behavioral cost. In a subsequent functional magnetic resonance imaging experiment with similar task and stimuli, We found anticipatory activations in the occipital cortex contralateral to the expected distractor, but no additional target modulation, when participants were given advance information about a distractor's subsequent presence and location, Several attention-related control structures (frontal eye fields and superior parietal cortex) were active during attentional preparation for all trials, whereas the left superior prefrontal and right angular gyri were additionally activated when a distractor Was anticipated. The right temporoparietal junction showed stronger functional Coupling with occipital regions during preparation for trials with all isolated tat-get than for trials with a distractor expected. These results show that anticipation of a visual distractor at a known location, remote from the target, call lead to (1) a reduction in the behavioral cost of that distractor, (2) preparatory Modulation of the occipital cortex contralateral to the location of the expected distractor, and (3) anticipatory activation of distinct parietal and frontal brain structures. These findings indicate that specific components of preparatory visual attention may be devoted to minimizing the impact of distractors, not just to enhancements of target processing

    Readout from iconic memory involves similar neural processes as selective spatial attention

    Get PDF
    Iconic memory and spatial attention are often considered as distinct topics, but may have functional similarities. Here we provide fMRI evidence for some common underlying neural effects. Participants judged three visual stimuli in one hemifield of a bilateral array comprising six stimuli. The relevant hemifield for partial report was indicated by an auditory cue, administered either before the visual array (pre-cues, spatial attention) or shortly after (post-cues, iconic memory). Pre- and post-cues led to similar activity modulations in lateral occipital cortex, contralateral to the cued side, indicating that readout from iconic memory can have similar neural effects to spatial attention. We also found common bilateral activation of a fronto-parietal network for post-cue and pre-cue trials. These neuroimaging data suggest that some common neural mechanisms underlie selective spatial attention and readout from iconic memory. Some differences were also found, with post-cues leading to higher activity in right middle frontal gyrus

    Recent origin of low trabecular bone density in modern humans

    Get PDF
    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations

    The broad emission-line region: the confluence of the outer accretion disc with the inner edge of the dusty torus

    Full text link
    (Abridged) We investigate the observational characteristics of BLR geometries in which the BLR clouds bridge the gap, both in distance and scale height, between the outer accretion disc and the hot dust, forming an effective surface of a "bowl". The gas dynamics are dominated by gravity, and we include the effects of transverse Doppler shift, gravitational redshift and scale-height dependent macro-turbulence. Our simple model reproduces many of the phenomena observed in broad emission-line variability studies, including (i) the absence of response in the core of the optical recombination lines on short timescales, (ii) the enhanced red-wing response on short timescales, (iii) differences between the measured delays for the HILs and LILs, and (iv) identifies turbulence as a means of producing Lorentzian profiles (esp. for LILs) in low inclination systems, and for suppressing significant continuum--emission-line delays between the line wings and line core (esp. in LILs). A key motivation of this work was to reveal the physical underpinnings of the reported measurements of SMBH masses and their uncertainties. We find that SMBH masses derived from measurements of the fwhm of the mean and rms profiles show the closest correspondence between the emission lines in a single object, even though the emission line fwhm is a more biased mass indicator with respect to inclination. The predicted large discrepancies in the SMBH mass estimates between emission lines at low inclination, as derived using the line dispersion, we suggest may be used as a means of identifying near face-on systems. Our general results do not depend on specific choices in the simplifying assumptions, but are in fact generic properties of BLR geometries with axial symmetry that span a substantial range in radially-increasing scale height supported by turbulence, which then merge into the inner dusty TOR.Comment: 29 pages, 23 figures and 1 tabl

    The cutaneous 'rabbit' illusion affects human primary sensory cortex somatopically

    Get PDF
    We used functional magnetic resonance imaging (fMRI) to study neural correlates of a robust somatosensory illusion that can dissociate tactile perception from physical stimulation. Repeated rapid stimulation at the wrist, then near the elbow, can create the illusion of touches at intervening locations along the arm, as if a rabbit hopped along it. We examined brain activity in humans using fMRI, with improved spatial resolution, during this version of the classic cutaneous rabbit illusion. As compared with control stimulation at the same skin sites (but in a different order that did not induce the illusion), illusory sequences activated contralateral primary somatosensory cortex, at a somatotopic location corresponding to the filled-in illusory perception on the forearm. Moreover, the amplitude of this somatosensory activation was comparable to that for veridical stimulation including the intervening position on the arm. The illusion additionally activated areas of premotor and prefrontal cortex. These results provide direct evidence that illusory somatosensory percepts can affect primary somatosensory cortex in a manner that corresponds somatotopically to the illusory percept

    The Great MacQuarie Ridge Earthquake of 1989: Introduction

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95437/1/grl4839.pd

    DesBrisay Museum National Exhibition Centre, "The Ox in Nova-Scotia"

    Get PDF

    Edward J. Ruff Reports on the Colorado Junior Bar Conference

    Get PDF
    corecore