66 research outputs found

    The KELT Follow-Up Network And Transit False-Positive Catalog: Pre-Vetted False Positives For TESS

    Get PDF
    The Kilodegree Extremely Little Telescope (KELT) project has been conducting a photometric survey of transiting planets orbiting bright stars for over 10 years. The KELT images have a pixel scale of ~23\u27\u27 pixel⁻Âč—very similar to that of NASA\u27s Transiting Exoplanet Survey Satellite (TESS)—as well as a large point-spread function, and the KELT reduction pipeline uses a weighted photometric aperture with radius 3\u27. At this angular scale, multiple stars are typically blended in the photometric apertures. In order to identify false positives and confirm transiting exoplanets, we have assembled a follow-up network (KELT-FUN) to conduct imaging with spatial resolution, cadence, and photometric precision higher than the KELT telescopes, as well as spectroscopic observations of the candidate host stars. The KELT-FUN team has followed-up over 1600 planet candidates since 2011, resulting in more than 20 planet discoveries. Excluding ~450 false alarms of non-astrophysical origin (i.e., instrumental noise or systematics), we present an all-sky catalog of the 1128 bright stars (6 \u3c V \u3c 13) that show transit-like features in the KELT light curves, but which were subsequently determined to be astrophysical false positives (FPs) after photometric and/or spectroscopic follow-up observations. The KELT-FUN team continues to pursue KELT and other planet candidates and will eventually follow up certain classes of TESS candidates. The KELT FP catalog will help minimize the duplication of follow-up observations by current and future transit surveys such as TESS

    KELT-22Ab: A Massive, Short-Period Hot Jupiter Transiting a Near-solar Twin

    Get PDF
    We present the discovery of KELT-22Ab, a hot Jupiter from the KELT-South survey. KELT-22Ab transits the moderately bright (V ∌ 11.1) Sun-like G2V star TYC 7518-468-1. The planet has an orbital period of days, a radius of , and a relatively large mass of . The star has , , K, (cgs), and [m/H] = ; thus other than its slightly super-solar metallicity, it appears to be a near-solar twin. Surprisingly, KELT-22A exhibits kinematics and a Galactic orbit that are somewhat atypical for thin-disk stars. Nevertheless, the star is rotating rapidly for its estimated age, and shows evidence of chromospheric activity. Imaging reveals a slightly fainter companion to KELT-22A that is likely bound, with a projected separation of 6″ (∌1400 au). In addition to the orbital motion caused by the transiting planet, we detect a possible linear trend in the radial velocity of KELT-22A, suggesting the presence of another relatively nearby body that is perhaps non-stellar. KELT-22Ab is highly irradiated (as a consequence of the small semimajor axis of ), and is mildly inflated. At such small separations, tidal forces become significant. The configuration of this system is optimal for measuring the rate of tidal dissipation within the host star. Our models predict that, due to tidal forces, the semimajor axis is decreasing rapidly, and KELT-22Ab is predicted to spiral into the star within the next Gyr

    KELT-22Ab: A Massive, Short-Period Hot Jupiter Transiting A Near-Solar Twin

    Get PDF
    We present the discovery of KELT-22Ab, a hot Jupiter from the KELT-South survey. KELT-22Ab transits the moderately bright (V ~ 11.1) Sun-like G2V star TYC 7518-468-1. The planet has an orbital period of P = 1.3866529 ± 0.0000027 days, a radius of RP = 1.285 ((+0.12)/(=0.071)) RJ, and a relatively large mass of MP = 3.47 ((+0.15)/(=0.14)) MJ. The star has R★ = 1.099 ((+0.079)/(=0.046)) R⊙, M★ = 1.092 ((+0.045)/(-0.041) M⊙, Teff = 5767 ((+50)/(-49) K, log g★ = 4.393 ((+0.039)/(-0.060)) (cgs), and [m/H] = +0.259 ((+0.085)/(-0.083)); thus other than its slightly super-solar metallicity, it appears to be a near-solar twin. Surprisingly, KELT-22A exhibits kinematics and a Galactic orbit that are somewhat atypical for thin-disk stars. Nevertheless, the star is rotating rapidly for its estimated age, and shows evidence of chromospheric activity. Imaging reveals a slightly fainter companion to KELT-22A that is likely bound, with a projected separation of 6\u27\u27 (~1400 au). In addition to the orbital motion caused by the transiting planet, we detect a possible linear trend in the radial velocity of KELT-22A, suggesting the presence of another relatively nearby body that is perhaps non-stellar. KELT-22Ab is highly irradiated (as a consequence of the small semimajor axis of a/R★ = 4.97), and is mildly inflated. At such small separations, tidal forces become significant. The configuration of this system is optimal for measuring the rate of tidal dissipation within the host star. Our models predict that, due to tidal forces, the semimajor axis is decreasing rapidly, and KELT-22Ab is predicted to spiral into the star within the next Gyr

    KELT-24b: A 5M\u3csub\u3eJ\u3c/sub\u3e Planet on a 5.6 day Well-aligned Orbit around the Young V = 8.3 F-star HD 93148

    Get PDF
    We present the discovery of KELT-24 b, a massive hot Jupiter orbiting a bright (V = 8.3 mag, K = 7.2 mag) young F-star with a period of 5.6 days. The host star, KELT-24 (HD 93148), has a T eff = 6509−49+50{6509}_{-49}^{+50} K, a mass of M * = 1.460−0.059+0.055{1.460}_{-0.059}^{+0.055} M ⊙, a radius of R * = 1.506 ± 0.022 R ⊙, and an age of 0.78−0.42+0.61{0.78}_{-0.42}^{+0.61} Gyr. Its planetary companion (KELT-24 b) has a radius of R P = 1.272 ± 0.021 R J and a mass of M P = 5.18−0.22+0.21{5.18}_{-0.22}^{+0.21} M J, and from Doppler tomographic observations, we find that the planet\u27s orbit is well-aligned to its host star\u27s projected spin axis (λ=2.6−3.6+5.1\lambda ={2.6}_{-3.6}^{+5.1}). The young age estimated for KELT-24 suggests that it only recently started to evolve from the zero-age main sequence. KELT-24 is the brightest star known to host a transiting giant planet with a period between 5 and 10 days. Although the circularization timescale is much longer than the age of the system, we do not detect a large eccentricity or significant misalignment that is expected from dynamical migration. The brightness of its host star and its moderate surface gravity make KELT-24b an intriguing target for detailed atmospheric characterization through spectroscopic emission measurements since it would bridge the current literature results that have primarily focused on lower mass hot Jupiters and a few brown dwarfs

    KELT-25 B And KELT-26 B: A Hot Jupiter And A Substellar Companion Transiting Young A Stars Observed By TESS

    Get PDF
    We present the discoveries of KELT-25 b (TIC 65412605, TOI-626.01) and KELT-26 b (TIC 160708862, TOI-1337.01), two transiting companions orbiting relatively bright, early A stars. The transit signals were initially detected by the KELT survey and subsequently confirmed by Transiting Exoplanet Survey Satellite (TESS) photometry. KELT-25 b is on a 4.40 day orbit around the V = 9.66 star CD-24 5016 (Teff=8280−180+440{T}_{\mathrm{eff}}={8280}_{-180}^{+440} K, Msstarf = 2.18−0.11+0.12{2.18}_{-0.11}^{+0.12} M⊙), while KELT-26 b is on a 3.34 day orbit around the V = 9.95 star HD 134004 (Teff{T}_{\mathrm{eff}} = 8640−240+500{8640}_{-240}^{+500}K, Msstarf = 1.93−0.16+0.14{1.93}_{-0.16}^{+0.14}M⊙), which is likely an Am star. We have confirmed the substellar nature of both companions through detailed characterization of each system using ground-based and TESS photometry, radial velocity measurements, Doppler tomography, and high-resolution imaging. For KELT-25, we determine a companion radius of RP = 1.64−0.043+0.039{1.64}_{-0.043}^{+0.039}RJ and a 3σ upper limit on the companion\u27s mass of ~64 MJ. For KELT-26 b, we infer a planetary mass and radius of MP = 1.41−0.51+0.43{1.41}_{-0.51}^{+0.43}MJ{M}_{{\rm{J}}}and RP = 1.94−0.058+0.060{1.94}_{-0.058}^{+0.060}RJ. From Doppler tomographic observations, we find KELT-26 b to reside in a highly misaligned orbit. This conclusion is weakly corroborated by a subtle asymmetry in the transit light curve from the TESS data. KELT-25 b appears to be in a well-aligned, prograde orbit, and the system is likely a member of the cluster Theia 449

    KELT-24b: A 5M_J Planet on a 5.6 day Well-Aligned Orbit around the Young V=8.3 F-star HD 93148

    Get PDF
    We present the discovery of KELT-24 b, a massive hot Jupiter orbiting a bright (V=8.3 mag, K=7.2 mag) young F-star with a period of 5.6 days. The host star, KELT-24 (HD 93148), has a T_(eff) =6508±49 K, a mass of M∗ = 1.461^(+0.056)_(−0.060) M_⊙, radius of R∗ = 1.506±0.022 R_⊙, and an age of 0.77^(+0.61)_(−0.42) Gyr. Its planetary companion (KELT-24 b) has a radius of R_P = 1.272^(+0.021)_(−0.022) R_J, a mass of MP = 5.18^(+0.21)_(−0.22) M_J, and from Doppler tomographic observations, we find that the planet's orbit is well-aligned to its host star's projected spin axis (λ = 2.6^(+5.1)_(−3.6)). The young age estimated for KELT-24 suggests that it only recently started to evolve from the zero-age main sequence. KELT-24 is the brightest star known to host a transiting giant planet with a period between 5 and 10 days. Although the circularization timescale is much longer than the age of the system, we do not detect a large eccentricity or significant misalignment that is expected from dynamical migration. The brightness of its host star and its moderate surface gravity make KELT-24b an intriguing target for detailed atmospheric characterization through spectroscopic emission measurements since it would bridge the current literature results that have primarily focused on lower mass hot Jupiters and a few brown dwarfs

    Another Shipment of Six Short-Period Giant Planets from TESS

    Get PDF
    We present the discovery and characterization of six short-period, transiting giant planets from NASA's Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), & TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G< 11.8, 7.7 <K< 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program (TFOP) Working Group, we have determined that the planets are Jovian-sized (RP_{P} = 1.00-1.45 RJ_{J}), have masses ranging from 0.92 to 5.35 MJ_{J}, and orbit F, G, and K stars (4753 << Teff_{eff} << 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 days, ee = 0.220±0.0530.220\pm0.053), TOI-2145 b (P = 10.261 days, ee = 0.182−0.049+0.0390.182^{+0.039}_{-0.049}), and TOI-2497 b (P = 10.656 days, ee = 0.196−0.053+0.0590.196^{+0.059}_{-0.053}). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 << log⁥\log g <<4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; 5.35−0.35+0.325.35^{+0.32}_{-0.35} MJ_{\rm J} (TOI-2145 b) and 5.21±0.525.21\pm0.52 MJ_{\rm J} (TOI-2497 b). These six new discoveries contribute to the larger community effort to use {\it TESS} to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies.Comment: 20 Pages, 6 Figures, 8 Tables, Accepted by MNRA
    • 

    corecore