28 research outputs found

    Anion gap, anion gap corrected for albumin, base deficit and unmeasured anions in critically ill patients: implications on the assessment of metabolic acidosis and the diagnosis of hyperlactatemia

    Get PDF
    Abstract Background Base deficit (BD), anion gap (AG), and albumin corrected anion gap (ACAG) are used by clinicians to assess the presence or absence of hyperlactatemia (HL). We set out to determine if these tools can diagnose the presence of HL using cotemporaneous samples. Methods We conducted a chart review of ICU patients who had cotemporaneous arterial blood gas, serum chemistry, serum albumin (Alb) and lactate(Lac) levels measured from the same sample. We assessed the capacity of AG, BD, and ACAG to diagnose HL and severe hyperlactatemia (SHL). HL was defined as Lac > 2.5 mmol/L. SHL was defined as a Lac of > 4.0 mmol/L. Results From 143 patients we identified 497 series of lab values that met our study criteria. Mean age was 62.2 ± 15.7 years. Mean Lac was 2.11 ± 2.6 mmol/L, mean AG was 9.0 ± 5.1, mean ACAG was 14.1 ± 3.8, mean BD was 1.50 ± 5.4. The area under the curve for the ROC for BD, AG, and ACAG to diagnose HL were 0.79, 0.70, and 0.72, respectively. Conclusion AG and BD failed to reliably detect the presence of clinically significant hyperlactatemia. Under idealized conditions, ACAG has the capacity to rule out the presence of hyperlactatemia. Lac levels should be obtained routinely in all patients admitted to the ICU in whom the possibility of shock/hypoperfusion is being considered. If an AG assessment is required in the ICU, it must be corrected for albumin for there to be sufficient diagnostic utility.</p

    Acid-base status of critically ill patients with acute renal failure: analysis based on Stewart-Figge methodology

    No full text
    INTRODUCTION: The aim of the present study is to understand the nature of acid-base disorders in critically ill patients with acute renal failure (ARF) using the biophysical principles described by Stewart and Figge. A retrospective controlled study was carried out in the intensive care unit of a tertiary hospital. MATERIALS AND METHODS: Forty patients with ARF, 40 patients matched for Acute Physiology and Chronic Health Evaluation II score (matched control group), and 60 consecutive critically ill patients without ARF (intensive care unit control group) participated. The study involved the retrieval of biochemical data from computerized records, quantitative biophysical analysis using the Stewart-Figge methodology, and statistical comparison between the three groups. We measured serum sodium, potassium, magnesium, chloride, bicarbonate, phosphate, ionized calcium, albumin, lactate and arterial blood gases. RESULTS: Intensive care unit patients with ARF had a mild acidemia (mean pH 7.30 +/- 0.13) secondary to metabolic acidosis with a mean base excess of -7.5 +/- 7.2 mEq/l. However, one-half of these patients had a normal anion gap. Quantitative acid-base assessment (Stewart-Figge methodology) revealed unique multiple metabolic acid-base processes compared with controls, which contributed to the overall acidosis. The processes included the acidifying effect of high levels of unmeasured anions (13.4 +/- 5.5 mEq/l) and hyperphosphatemia (2.08 +/- 0.92 mEq/l), and the alkalinizing effect of hypoalbuminemia (22.6 +/- 6.3 g/l). CONCLUSIONS: The typical acid-base picture of ARF of critical illness is metabolic acidosis. This acidosis is the result of the balance between the acidifying effect of increased unmeasured anions and hyperphosphatemia and the lesser alkalinizing effect of hypoalbuminemia

    Evidence from renal proximal tubules that [Formula: see text] and solute reabsorption are acutely regulated not by pH but by basolateral [Formula: see text] and CO(2)

    No full text
    Respiratory acidosis, a decrease in blood pH caused by a rise in [CO(2)], rapidly triggers a compensatory response in which the kidney markedly increases its secretion of H(+) from blood to urine. However, in this and other acid-base disturbances, the equilibrium CO(2) + H(2)O ⇄ [Formula: see text] + H(+) makes it impossible to determine whether the critical parameter is [CO(2)], [Formula: see text] , and/or pH. Here, we used out-of-equilibrium [Formula: see text] solutions to alter basolateral (BL) [Formula: see text] , [CO(2)], or pH, systematically and one at a time, on isolated perfused S2 rabbit proximal tubules. We found that increasing [Formula: see text] from 0 to 44 mM, at a fixed [CO(2)](BL) of 5% and a fixed pH(BL) of 7.40, caused [Formula: see text] reabsorption (J(HCO(3))) to fall by half but did not significantly affect volume reabsorption (J(V)). Increasing [CO(2)](BL) from 0% to 20%, at a fixed [Formula: see text] of 22 mM and pH(BL) of 7.40, caused J(HCO(3)) to rise 2.5-fold but did not significantly affect J(V). Finally, increasing pH(BL) from 6.80 to 8.00, at a fixed [Formula: see text] of 22 mM and [CO(2)](BL) of 5%, did not affect either J(HCO(3)) or J(V). Analysis of the J(HCO(3)) and J(V) data implies that, as the tubule alters J(HCO(3)), it compensates the reabsorption of other solutes to keep J(V) approximately constant. Because the cells cannot respond acutely to pH changes, we propose that the responses of J(HCO(3)) and the reabsorption of other solutes to changes in [Formula: see text] or [CO(2)](BL) involve sensors for basolateral [Formula: see text] and CO(2)
    corecore