50 research outputs found

    Quantitative Subcellular Proteome and Secretome Profiling of Influenza A Virus-Infected Human Primary Macrophages

    Get PDF
    Influenza A viruses are important pathogens that cause acute respiratory diseases and annual epidemics in humans. Macrophages recognize influenza A virus infection with their pattern recognition receptors, and are involved in the activation of proper innate immune response. Here, we have used high-throughput subcellular proteomics combined with bioinformatics to provide a global view of host cellular events that are activated in response to influenza A virus infection in human primary macrophages. We show that viral infection regulates the expression and/or subcellular localization of more than one thousand host proteins at early phases of infection. Our data reveals that there are dramatic changes in mitochondrial and nuclear proteomes in response to infection. We show that a rapid cytoplasmic leakage of lysosomal proteins, including cathepsins, followed by their secretion, contributes to inflammasome activation and apoptosis seen in the infected macrophages. Also, our results demonstrate that P2X7 receptor and src tyrosine kinase activity are essential for inflammasome activation during influenza A virus infection. Finally, we show that influenza A virus infection is associated with robust secretion of different danger-associated molecular patterns (DAMPs) suggesting an important role for DAMPs in host response to influenza A virus infection. In conclusion, our high-throughput quantitative proteomics study provides important new insight into host-response against influenza A virus infection in human primary macrophages

    Genomic HIV RNA Induces Innate Immune Responses through RIG-I-Dependent Sensing of Secondary-Structured RNA

    Get PDF
    Contains fulltext : 108031.pdf (publisher's version ) (Open Access)BACKGROUND: Innate immune responses have recently been appreciated to play an important role in the pathogenesis of HIV infection. Whereas inadequate innate immune sensing of HIV during acute infection may contribute to failure to control and eradicate infection, persistent inflammatory responses later during infection contribute in driving chronic immune activation and development of immunodeficiency. However, knowledge on specific HIV PAMPs and cellular PRRs responsible for inducing innate immune responses remains sparse. METHODS/PRINCIPAL FINDINGS: Here we demonstrate a major role for RIG-I and the adaptor protein MAVS in induction of innate immune responses to HIV genomic RNA. We found that secondary structured HIV-derived RNAs induced a response similar to genomic RNA. In primary human peripheral blood mononuclear cells and primary human macrophages, HIV RNA induced expression of IFN-stimulated genes, whereas only low levels of type I IFN and tumor necrosis factor alpha were produced. Furthermore, secondary structured HIV-derived RNA activated pathways to NF-kappaB, MAP kinases, and IRF3 and co-localized with peroxisomes, suggesting a role for this organelle in RIG-I-mediated innate immune sensing of HIV RNA. CONCLUSIONS/SIGNIFICANCE: These results establish RIG-I as an innate immune sensor of cytosolic HIV genomic RNA with secondary structure, thereby expanding current knowledge on HIV molecules capable of stimulating the innate immune system

    Recent evolution of the NF-κB and inflammasome regulating protein POP2 in primates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pyrin-only protein 2 (POP2) is a small human protein comprised solely of a pyrin domain that inhibits NF-κB p65/RelA and blocks the formation of functional IL-1β processing inflammasomes. Pyrin proteins are abundant in mammals and several, like POP2, have been linked to activation or regulation of inflammatory processes. Because <it>POP2 </it>knockout mice would help probe the biological role of inflammatory regulation, we thus considered whether <it>POP2 </it>is common in the mammalian lineage.</p> <p>Results</p> <p>BLAST searches revealed that <it>POP2 </it>is absent from the available genomes of not only mice and rats, but those of other domestic mammals and New World monkeys as well. <it>POP2 </it>is however present in the genome of the primate species most closely related to humans including <it>Pan troglodytes </it>(chimpanzees), <it>Macaca mulatta </it>(rhesus macaques) and others. Interestingly, chimpanzee POP2 is identical to human POP2 (huPOP2) at both the DNA and protein level. Macaque POP2 (mqPOP2), although highly conserved is not identical to the human sequence; however, both functions of the human protein are retained. Further, <it>POP2 </it>appears to have arisen in the mammalian genome relatively recently (~25 mya) and likely derived from retrogene insertion of <it>NLRP2</it>.</p> <p>Conclusion</p> <p>Our findings support the hypothesis that the NLR loci of mammals, encoding proteins involved in innate and adaptive immunity as well as mammalian development, have been subject to recent and strong selective pressures. Since POP2 is capable of regulating signaling events and processes linked to innate immunity and inflammation, its presence in the genomes of hominids and Old World primates further suggests that additional regulation of these signals is important in these species.</p

    Cyclooxygenase-2 and gastric carcinogenesis

    No full text
    Epidemiological studies have shown that the use of nonsteroid anti-inflammatory drugs (NSAIDs) is associated with reduced risk of gastric cancer. The best-known target of NSAIDs is the cyclooxygenase (Cox) enzyme. Two Cox genes have been cloned, of which Cox-2 has been connected with gastric carcinogenesis. Expression of Cox-2 is elevated in gastric adenocarcinomas, which correlates with several clinicopathological parameters, including depth of invasion and lymph node metastasis. This suggests that Cox-2-derived prostanoids promote aggressive behavior of adenocarcinomas of the stomach. Cox-2 expression is especially prominent in intestinal-type gastric carcinoma and it is already present in dysplastic precursor lesions of this disease, which suggests that Cox-2 contributes to gastric carcinogenesis already at the preinvasive stage. Our most recent data show that Cox-2 is expressed in gastric adenomas of trefoil factor 1 deficient mice. Treatment of these mice with a Cox-2 selective inhibitor, celecoxib, reduced the size of the adenomas. Taken together these data support efforts to initiate clinical studies to investigate the effect of Cox-2 inhibitors as chemotherapeutic agents and as adjuvant treatment modalities against gastric neoplasia

    The innate immune response induced by HIV genomic RNA or RNA oligos is dependent on RIG-I and MAVS.

    No full text
    <p>(A) PBMCs were treated with bafilomycin A1 (0.5 µM) as indicated 15 min prior to stimulation with genomic HIV RNA, RNA oligos, or ssRNA40 (all 2 µg/ml). IFN-α was included as a positive control (10 ng/ml). Supernatants were harvested 18 h post stimulation for measurement of CXCL10. (B) BMMs from C57BL/6 wildtype and MAVS−/− mice were stimulated with genomic HIV RNA (2 µg/ml), Tar (2 µg/ml), Sendai virus (MOI 1), IFN-α (10 ng/ml), ssRNA40 (2 µg/ml), or R848 (2 µg/ml). Supernatants were harvested after 16 h and CXCL10 was measured by ELISA. UT, untreated cells. Data are shown as means of triplicates +/− st.dev. (C) Huh7, Huh7.5 (RIG-I mutant), Huh7.5 EV (empty vector), and Huh7.5 RIG-I cells were transfected with Tar RNA (2 µg/ml), or subjected to mock transfection with Lipofectamine 2000. Total RNA was harvested 6 h later and CXCL10 mRNA levels were analysed by qPCR. Data are shown as means of triplicates +/− st.dev. Similar results were obtained in two or three independent experiments. Mock, Lipofectamine 2000 alone. RU, relative units *, p<0.05.</p
    corecore