94 research outputs found

    37 years of forest monitoring in Switzerland: drought effects on; Fagus sylvatica

    Get PDF
    European beech is one of the most important deciduous tree species in natural forest ecosystems in Central Europe. Its dominance is now being questioned by the emerging drought damages due to the increased incidence of severe summer droughts. In Switzerland, Fagus sylvatica have been observed in the Intercantonal Forest Observation Program since 1984. The dataset presented here includes 179176 annual observations of beech trees on 102 plots during 37 years. The plots cover gradients in drought, nitrogen deposition, ozone, age, altitude, and soil chemistry. In dry regions of Switzerland, the dry and hot summer of 2018 caused a serious branch dieback, increased mortality in Fagus sylvatica and increased yellowing of leaves. Beech trees recovered less after 2018 than after the dry summer 2003 which had been similar in drought intensity except that the drought in 2018 started earlier in spring. Our data analyses suggest the importance of drought in subsequent years for crown transparency and mortality in beech. The drought in 2018 followed previous dry years of 2015 and 2017 which pre-weakened the trees. Our long-term data indicate that the drought from up to three previous years were significant predictors for both tree mortality and for the proportion of trees with serious (>60%) crown transparency. The delay in mortality after the weakening event suggests also the importance of weakness parasites. The staining of active vessels with safranine revealed that the cavitation caused by the low tree water potentials in 2018 persisted at least partially in 2019. Thus, the ability of the branches to conduct water was reduced and the branches dried out. Furthermore, photooxidation in light-exposed leaves has increased strongly since 2011. This phenomenon was related to low concentrations of foliar phosphorus (P) and hot temperatures before leaf harvest. The observed drought effects can be categorized as (i) hydraulic failure (branch dieback), (ii) energy starvation as a consequence of closed stomata and P deficiency (photooxidation) and (iii) infestation with weakness parasites (beech bark disease and root rots)

    Hybrid Multistarting GA-Tabu Search Method for the Placement of BtB Converters for Korean Metropolitan Ring Grid

    Get PDF
    This paper presents a method to determine the optimal locations for installing back-to-back (BtB) converters in a power grid as a countermeasure to reduce fault current levels. The installation of BtB converters can be regarded as network reconfiguration. For the purpose, a hybrid multistarting GA-tabu search method was used to determine the best locations from a preselected list of candidate locations. The constraints used in determining the best locations include circuit breaker fault current limits, proximity of proposed locations, and capability of the solution to reach power flow convergence. A simple power injection model after applying line-opening on selected branches was used as a means for power flows with BtB converters. Kron reduction was also applied as a method for network reduction for fast evaluation of fault currents with a given topology. Simulations of the search method were performed on the Korean power system, particularly the Seoul metropolitan area

    Analysis of solar direct irradiance models under clear-skies: Evaluation of the improvements for locally adapted models

    Get PDF
    Direct solar irradiance has to be determined for the design of many energy applications such as photovoltaic systems and concentration systems, and the generation of solar potential maps for energy use. Knowledge of the accurate values of radiation components in a local area will allow optimal sizing of solar energy conversion systems. The estimated values of direct solar irradiance from models are still necessary at those sites where no measurements are available. In this work, different models used for the estimation of the direct component of solar irradiance are analyzed. First, an evaluation of the performance of eight existing original models was performed from which three were selected. Second, the selected models were calibrated to adapt them to our studied geographical area, which is the important aspect of this work, and an assessment of performance improvements for locally adapted models is reported. Experimental data consisted of hourly horizontal global, direct, and diffuse solar irradiance values, provided by the National Meteorological Agency in Spain (AEMET) for Madrid. Long-term data series, corresponding to a total period of time of 32 years (1980–2011), have been used in this study. Only clear sky models were treated at present. The three selected models were adapted to the specific location of Madrid, and root mean square error (RMSE) and mean-biased error were determined. By comparing the performance in the direct horizontal irradiance estimation from existing original and the corresponding locally adapted models, it is found that the values of RMSE decreased from 9.9% to 5.7% for the Louche model, from 7.8% to 7.4% for the Robledo-Soler model, and finally from 8.8% to 6.7% for the European Solar Radiation Atlas model. Thus, significant improvements can be reached when parametric models are locally adapted. In our case, it is up to approximately 4% for the Louche model. It is expected that calibrated algorithms presented in this work will be applicable to regions of similar climatic characteristics.Spanish Government (grant ENE2011-27511) and the Department of Culture and Education of the Regional Government of Castilla y León, Spain (grant BU358A12-2

    Mortality forecasting in Colombia from abridged life tables by sex

    Full text link
    [EN] BACKGROUND: An adequate forecasting model of mortality that allows an analysis of different population changes is a topic of interest for countries in demographic transition. Phenomena such as the reduction of mortality, ageing, and the increase in life expectancy are extremely useful in the planning of public policies that seek to promote the economic and social development of countries. To our knowledge, this paper is one of the first to evaluate the performance of mortality forecasting models applied to abridged life tables. OBJECTIVE: Select a mortality model that best describes and forecasts the characteristics of mortality in Colombia when only abridged life tables are available. DATA AND METHOD: We used Colombian abridged life tables for the period 1973-2005 with data from the Latin American Human Mortality Database. Different mortality models to deal with modeling and forecasting probability of death are presented in this study. For the comparison of mortality models, two criteria were analyzed: graphical residuals analysis and the hold-out method to evaluate the predictive performance of the models, applying different goodness of fit measures. RESULTS: Only three models did not have convergence problems: Lee-Carter (LC), Lee-Carter with two terms (LC2), and Age-Period-Cohort (APC) models. All models fit better for women, the improvement of LC2 on LC is mostly for central ages for men, and the APC model's fit is worse than the other two. The analysis of the standardized deviance residuals allows us to deduce that the models that reasonably fit the Colombian mortality data are LC and LC2. The major residuals correspond to children's ages and later ages for both sexes. CONCLUSION: The LC and LC2 models present better goodness of fit, identifying the principal characteristics of mortality for Colombia.Mortality forecasting from abridged life tables by sex has clear added value for studying differences between developing countries and convergence/divergence of demographic changes.Support for the research presented in this paper was provided by a grant from the Ministerio de Economía y Competitividad of Spain, project no. MTM2013-45381-P.Diaz-Rojo, G.; Debón Aucejo, AM.; Giner-Bosch, V. (2018). Mortality forecasting in Colombia from abridged life tables by sex. Genus. Journal of Population Sciences (Online). 74(15):1-23. https://doi.org/10.1186/s41118-018-0038-6S1237415Aburto, J.M., & García-Guerrero, V.M. (2015). El modelo aditivo doble multiplicativo. Una aplicacion a la mortalidad mexicaná. Papeles de Población, 21(84), 9–44.Acosta, K., & Romero, J. (2014). Cambios recientes en las principales causas de mortalidad en Colombia. Technical report: Banco de la Banco de la República- Serie Documentos de Trabajo Sobre Economía Regional.Aguilar, E. (2013). Estimación y proyección de la mortalidad para Costa Rica con la aplicación del método Lee-Carter con dos variantes. Población y, Salud en Mesoamérica, 11(1), 3–24.Andreozzi, L (2012). Estimación y pronósticos de la mortalidad de Argentina utilizando el modelo de Lee-Carter. Revista de la Sociedad Argentina de Estadística, 10(1), 21–43.Andreozzi, L, & Blaconá, MT (2011). Estimación y pronóstico de las tasas de mortalidad y la esperanza de vida en la República Argentina. In Proceedings of Anales de las Decimosextas Jornadas Investigaciones en la Facultad de Ciencias Económicas y Estadística. Universidad Nacional de Rosario, Argentina.Andres, V, Millossovich, P, Vladimir, K (2018). StMoMo: Stochastic Mortality Modeling in R. Journal of Statistical Software, 84(3), 1–38.Belliard, M., & Williams, I. (2013). Proyección estocástica de la mortalidad. Una aplicación de Lee-Carter en la Argentina. Revista Latinoamericana de Población, 7(13), 129–148.Bertranou, E. (2008). Tendencias demográficas y protección social en América Latina y el Caribe: CEPAL. http://repositorio.cepal.org/handle/11362/7224 . Accessed 8 Aug 2017.Blaconá, M.T, & Andreozzi, L. (2014). Análisis de la mortalidad por edad y sexo mediante modelos para datos funcionales. Estadística, 66(186–187), 65–89.Blum, A., Kalai, A., Langford, J. (1999). Beating the hold-out: bounds for k-fold and progressive cross-validation. In Proceedings of the twelfth annual Conference on Computational Learning Theory. ACM, (pp. 203–208).Booth, H., Maindonald, J., Smith, L. (2002). Applying Lee-Carter under conditions of variable mortality decline. Population Studies, 56(3), 325–336.Booth, H., & Tickle, L. (2008). Mortality modelling and forecasting: a review of methods. Annals of Actuarial Science, 3(1–2), 3–43.Butt, Z., Haberman, S., Shang, H.L. (2014). ilc: Lee-Carter mortality models using iterative fitting algorithms. http://cran.r-project.org/package=ilc .Cairns, A.J., Blake, D., Dowd, K. (2006). A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. Journal of Risk and Insurance, 73(4), 687–718.Cairns, A.J., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Khalaf-Allah, M. (2011). Mortality density forecasts: an analysis of six stochastic mortality models. Insurance: Mathematics and Economics, 48(3), 355–367.Cairns, A.J., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Ong, A., Balevich, I. (2009). A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. North American Actuarial Journal, 13(1), 1–35.Canudas-Romo, V. (2008). The modal age at death and the shifting mortality hypothesis. Demographic Research, 19(30), 1179–1204.Carfora, M.F., Cutillo, L., Orlando, A. (2017). A quantitative comparison of stochastic mortality models on Italian population data. Computational Statistics & Data Analysis, 112, 198–214.Currie, I.D., Durban, M., Eilers, P.H.C. (2006). Generalized linear array models with applications to multidimensional smoothing. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(2), 259–280.Debón, A., Martínez-Ruiz, F., Montes, F. (2012). Temporal evolution of mortality indicators: application to Spanish data. North American Actuarial Journal, 16(3), 364–377.Debón, A., Montes, F., Puig, F. (2008). Modelling and forecasting mortality in Spain. European Journal of Operation Research, 189(3), 624–637.Debón, A., Martínez-Ruiz, F., Montes, F. (2010). A geostatistical approach for dynamic life tables: the effect of mortality on remaining lifetime and annuities. Insurance: Mathematics and Economics, 47(3), 327–336.Díaz, G., & Debón, A. (2016). Tendencias y comportamiento de la mortalidad en Colombia entre 1973 y 2005. Estadística Española, 58(191), 277–300.García-Guerrero, V.M., & Mellado, M.O. (2012). Proyección estocástica de la mortalidad mexicana por medio del método de Lee-Carter. Estudios Demográficos y Urbanos, 27(2), 409–448.Garfield, R., & Llanten, C. (2004). The public health context of violence in Colombia. Revista Panamericana de Salud Pública, 16(4), 266–271.Haberman, S. (2011). A comparative study of parametric mortality projection models. Insurance: Mathematics and Economics, 48(1), 35–55.Holford, T.R. (2006). Approaches to fitting age-period-cohort models with unequal intervals. Statistics in Medicine, 25(6), 977–993.Hunt, A., & Villegas, A.M. (2015). Robustness and convergence in the Lee-Carter model with cohort effects. Insurance: Mathematics and Economics, 64, 186–202.Hyndman, R.J. (2016). Forecast: forecasting functions for time series and linear models. R package version 7.3. https://CRAN.R-project.org/package=forecast .Hyndman, R.J, Booth, H., Tickle, L., Maindonald, J. (2014). Demography: forecasting mortality, fertility, migration and population data. R package version 1.18. https://CRAN.R-project.org/package=demography .Hyndman, R.J., & Ullah, M.S (2007). Robust forecasting of mortality and fertility rates: a functional data approach. Computational Statistics & Data Analysis, 51(10), 4942–4956.Kennes, T. (2017). The convergence and robustness of cohort extensions of mortality models. MaRBLe, 1, 36–53.Lee, R., & Carter, L. (1992). Modelling and forecasting U.S. mortality. Journal of the American Statistical Association, 87, 659–671.Lee, R., & Rofman, R. (1994). Modelación y proyección de la mortalidad en Chile. Notas de Poblacion, 6(59), 183–213.Lee, W. (1997). Characterizing exposure-disease association in human populations using the Lorenz curve and Gini index. Statistics in Medicine, 16(7), 729–739.Levitt, S., & Rubio, M. (2000). Understanding crime in Colombia and what can be done about it. Technical Report 20, FEDESARROLLO.Llorca, J., Prieto, M.D., Alvarez, C.F., Delgado-Rodriguez, M. (1998). Age differential mortality in Spain, 1900–1991. Journal of Epidemiology & Community Health, 52, 259–261.Llorca, J, Prieto, M.D, Delgado-Rodriguez, M (2000). Medición de las desigualdades en la edad de muerte: cálculo del índice de Gini a partir de las tablas de mortalidad. Revista Española de Salud Pública, 74(1), 5–12.Lora, E. (2008). Técnicas de medición económica. Metodología y aplicaciones en Colombia, Ed. Siglo Veintiuno XXI y Fedesarrollo, fourth edition. Bogotá D.C.: Alfaomega Colombiana S.A.Ochoa, C.A. (2015). El modelo Lee-Carter para estimar y pronosticar mortalidad: una aplicación para Colombia. Master’s thesis: Universidad Nacional de Colombia-Sede Medellín.O’hare, C., & Li, Y. (2017). Modelling mortality: are we heading in the right direction?Applied Economics, 49(2), 170–187.Ornelas, A. (2015). La mortalidad y la longevidad en la cuantificación del riesgo actuarial para la población de México. PhD thesis: Universitat de Barcelona.Remund, A., Camarda, C.G., Riffe, T., et al. (2017). A cause-of-death decomposition of the young adult mortality hump. Technical report. Rostock, Germany: Max Planck Institute for Demographic Research.Renshaw, A.E., & Haberman, S. (2003). Lee-Carter mortality forecasting with age-specific enhancement. Insurance: Mathematics and Economics, 33(2), 255–272.Renshaw, A.E., & Haberman, S. (2006). A cohort-based extensionto the Lee-Carter model for mortality reduction factors. Insurance: Mathematic and Economics, 38(3), 556–570.Reyes, A.R. (2010). Una aproximación al costo fiscal en pensiones como consecuencia del envejecimiento de la población en Colombia y el efecto de la sobre-mortalidad masculina. Master’s thesis: Universidad Nacional de Colombia.Richards, S. (2008). Detecting year-of-birth mortality patterns with limited data. Journal of the Royal Statistical Society: Series A (Statistics in Society), 171(1), 279–298.Rodríguez, J. (2007). Desigualdades socioeconómicas entre departamentos y su asociación con indicadores de mortalidad en Colombia en 2000. Rev Panam Salud Publica, 21(2/3), 111–124.Shkolnikov, V.M., Andreev, E.M., Begun, A. (2003). Gini coefficient as a life table function: computation from discrete data, decomposition of differences and empirical examples. Demographic Research, 8, 305–358.Singh, A., Shukla, A., Ram, F., Kumar, K. (2017). Trends in inequality in length of life in India: a decomposition analysis by age and causes of death. Genus, 73(1), 5.Tabeau, E. (2001). A review of demographic forecasting models for mortality. In: Tabeau, E., van den Berg Jeths A., Heathcote C. (Eds.) In Forecasting Mortality in Developed Countries. European Studies of Population, vol 9. Springer, Dordrecht, (pp. 1–32).Turner, H., & Firth, D. (2015). gnm: Generalized nonlinear models in R. R package version 1.0-8. https://CRAN.R-project.org/package=gnm .Urdinola, B.P., & Queiroz, B.L. (2017). Latin American Human Mortality Database. http://www.lamortalidad.org . Accessed 21 Nov 2015
    corecore