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Abstract Load balancing is an important topic in smart
grid systems. Dynamic pricing is a common approach to
achieve a better balance between renewable energy pro-
duction and energy usage. This assumes that individual
households adapt their energy usage patterns based on
energy prices. However, the actual behaviour of con-
sumers in a household is an uncertain factor that might
influence the effectiveness of pricing strategies. In this
paper, we investigate to what extent knowledge about
actual user behaviour can contribute to local optimiza-
tion of energy usage. We use simulations to study
whether a smart heating system that applies a pre-
heating strategy for domestic water during periods of
low prices can benefit from good predictions of the user
behaviour, in financial terms or in terms of energy
saving. Also, we use the simulations to investigate the
effect of different goal temperatures for the pre-heating
strategy. The results show that pre-heating does not
make a difference with respect to the energy efficiency,
but that during cold months, pre-heating can result in a
financial benefit. In addition, we calculate what certain-
ty about the user behaviour is needed to be able to
effectively use pre-heating during the warmer summer

month. These results can help to design residential en-
ergy optimization systems.

Keywords Behavioural information .Smart thermostat .

Domestic energymanagement . Domestic hot water

Introduction

Electricity generation by non-schedulable renewable
sources is quickly growing and implies challenges for
the management of electricity grids because of possible
imbalances between the supply and demand of energy.
Information and communication technology provides
promising solutions to efficiently overcome the prob-
lem. Remote scheduling of appliances and dynamic
pricing of electricity are seen as ways that can help to
shift the demand. However, the role of information
about the actual behaviour of the user in smart grids is
limited in current research. In most research around
smart grids, it is usually assumed that users are just
rational economic entities, but we take the uncertainty
of the user’s behaviour into account. In fact, there are
more factors that influence the choices of users. In this
paper, we investigate to what extent knowledge about
actual user behaviour can contribute to local optimiza-
tion of energy usage.

In particular, we investigate to what extent knowledge
about the pattern in the usage of hot water in a house can
lead to cost savings or energy reduction. For this purpose,
we propose a smart algorithm. Our approach is based on
overheating the hot water storage before high-peak hours
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(like Loesch et al. 2014), in order to get a higher degree of
freedom for scheduling, especially for peak hours when a
high usage is also expected. However, overheating in-
creases the energy loss, and unnecessary overheating
leads to high energy wasting. Our assumption therefore
is that it is important to have a correct prediction of the
usage during a high-peak period.

Our hypothesis is that the ability to predict the user
behaviour will result in strategies that are more energy
efficient. To validate this hypothesis, we use a simulation
of a house with an electrical heater and thermal energy
storage (a hot water tank). We simulate two scenarios in
which the predictions about high usage are either correct
or incorrect. Based on this, we show for which level of
precision of the behaviour prediction it is beneficial to use
a pre-heating strategy. In addition, we perform simula-
tions with different goal temperatures for the pre-heating.
Based on these results, we can draw conclusions about
the most efficient goal temperature in different situations.
Although our simulations refer to a specific case study,
similar analyses can be conducted for other configura-
tions and control strategies and other demand-response
management (DRM) programs. Our findings enable us to
draw useful conclusions about the role of behavioural
information in the framework of DRM plans.

In this paper, we first extensively discuss the back-
ground of our work. Then, we introduce the different
controlling strategies, which are used in the simulations
in section BEnergy and cost effects of pre-heating.^ The
simulation results are analyzed in section BOptimal tar-
get temperature for pre-heating.^ Finally, the paper con-
cludes with our most important findings and suggestions
for future work.

Background

Demand side management in residential settings

According to data published by US Energy Information
administration,1 about 40% of the total US energy in
2015 was consumed in residential and commercial
buildings, and more than half of it was used for heating
purposes (space and water heating).

Smart grids are aimed at the management of both
electricity generation and consumption, in order to pro-
vide a better integration and exploitation of renewable

energy sources. A major component of the future smart
grid is an adaptive demand side that allows handling the
fluctuating power supply based on renewable energies.
Demand response management, DRM, includes all pro-
grams designed to influence the customer’s energy use,
focusing on changing the shape of the load and thereby
helping to optimize the whole power system.

Price response strategies are core elements of this
process and consist of the optimization of the amount
of electricity consumed by the end-user by dynamically
adapting electricity prices on an hourly basis by the
electricity provider (Schibuola et al. 2015).

Residential premises contain electrical devices
that have a lot of hitherto unused flexibility. Their
operation can either be delayed (dishwashers, wash-
ing machines, etc.), or they contain an energy buffer
(Vanthournout et al. 2012). The latter can be an
electrical, i.e. batteries, or a thermal buffer. As the
cost of water-based thermal buffers is low compared
to batteries, these are especially interesting. The
more because the thermal demand of a household
represents a major portion of the total energy usage.
Based on an Australian study, up to 28% of CO2

emission of houses in 1998 were from the operation
of hot water systems (Crawford and Treloar 2004).
Also, the charging of thermal buffers can be shifted
invisibly for the user and without comfort impact.
Therefore, the work presented in this article focuses
on buffered electric domestic hot water systems
(from now on: DHW) as a source of flexibility to
be used in demand response systems.

Using hot water as thermal buffer

The usage of DHW is highly variable: it depends on the
geographical situation, also on people’s habits, on the
time of the year and of course on the type of building
usage. Above all, it depends on the inhabitants’ specific
lifestyle (Meyer and Tshimankinda 1998; Ndoye and
Sarr 2008). Nevertheless, residential DHW consump-
tion might show diverse daily consumption profiles at a
standard temperature, depending on the inhabitants’
demands along the week (Ndoye and Sarr 2008). Be-
cause the instant hot water needed throughout the day is
different, a heat source that would be needed to supply
the instant demand has to be oversized, which is ineffi-
cient. Therefore, storing DHW in tanks in order to have
water prepared for consumption at the desirable1 http://www.eia.gov/tools/faqs/faq.cfm?id=86&t=1
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temperature whenever inhabitants require it is more
efficient and convenient.

Considering that buildings account for more than
40% of the total energy consumption in the European
Union, mainly for space heating and hot water, these are
relatively large demands that can be controlled and
adapted to perform a DRM function (Arteconi et al.
2013). In winter-dominated climates, the DHW loads
can contribute as much as 30% of the total household
load (Nehrir et al. 1999). The DHW load profile and
average daily global energy load profile follow a similar
pattern, meaning that these loads significantly contribute
to peak load values (Nehrir et al. 2007). Moreover,
DHW is an ideal candidate for DRM because the hot
water in the tanks acts as energy storage.

Modelling domestic hot water systems

There is extensive literature on the modelling of electri-
cal DWHs. A novel domestic hot water heater model to
be used in a multi-objective demand side management
program is suggested in Paull et al. (2010). The model
incorporates both the thermal losses and the water usage
to determine the temperature of the water in the tank.

Research on DHW buffers for use in smart grid
environments either focuses on specialized coordination
systems for DHW buffers (e.g. Lane et al. 1996; Du and
Lu 2011) or focuses on modelling the behaviour of
DHWbuffers. Examples of the latter are Lane and Beute
(1996), which presents a model to predict the load
caused by electric DHW buffers (Kreuzinger et al.
2008), which proposes a methods to estimate the de-
tailed temperature profile of a DHW buffer based on
limited temperature measurements.

Vanthournout and colleagues (Vanthournout et al.
2012) present a generalized interface for electric DHW
buffers, based on four key indicators that together rep-
resent the flexibility state of the buffer, while hiding all
implementation details of the device. The correct behav-
iour of these key indicators has been validated by means
of simulations and measurements in a lab prototype that
they developed.

In Rodríguez-Hidalgo et al. (2012)), the size of a
storage tank is determined for usage in a solar thermal
system. It shows that the storage volume not only affects
the accumulated energy but also is related to the heat
exchanger and collector performances. In consequence,
its size will influence in a significant way the perfor-
mance of the whole DHW solar plant.

In addition to the technologies like thermal energy
storages, it seems that smart algorithms are very impor-
tant, and improper management of heating and storage
system could result in negative effects on the energy
costs and also on the electrical grid (Loesch et al. 2014).

Controling strategies

In this section, we first review constraints on the tem-
perature of stored water. Then, two common strategies
for controlling the heating system (according to the
temperature of tank) are presented.

Constraints on the temperature of tank

There are some constraints on the temperature of hot
water stored in the tank. First of all, the temperature of
tank cannot go higher than the boiling point of storage
medium; thus, for tanks which use water, the tempera-
ture cannot exceed 100 °C. Moreover, the higher the
temperature, the higher the energy loss due to both
conduction and possibly the evaporation of hot water.

On the other side of the temperature spectrum, there
are discussions about the minimum safe temperature for
storing water in tanks. If the temperature of the stored
water is too low, the rate of pathogens, particularly
legionella (which can cause legionellosis), will increase.
According to Bartram (2007), temperature affects the
survival of legionella in water as follows:

– above 70 °C: legionella dies almost instantly
– at 60 °C: 90% dies in 2 min
– at 50 °C: 90% dies in 80–124 min, depending on

strain
– at 48 to 50 °C: it can survive but will not multiply
– between 32 and 42 °C: ideal growth range

The risk of bacteria colonies (legionella) in water is
potentially life threatening. The European Guidelines
for Control and Prevention of Travel Associated Le-
gionnaires’ Disease recommend that hot water should
be stored at 60 °C at least.

Regular controlling strategy

The regular controlling strategy is based on a hysteresis
of the storages’ temperature. It means that the allowed
temperature of the hot water storage is defined as a
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range. If the minimum temperature is reached, the heater
will turn on to increase the temperature; it will work
until the temperature reaches the maximum.

Controlling Signal tþΔtð Þ

¼
On T tð Þ < Tmin

Off T tð Þ > Tmax

Controlling Signal tð Þ Otherwise

0
@

1
A

The area between the minimum and maximum tem-
perature offers a degree of freedom for shifting the
heater runtime to a certain degree.

Pre-heating strategy

In Loesch et al. (2014), it is suggested to increase the
temperature of water stored in tank to a new higher
maximum just before the peak hours. By doing so, there
is less need to turn on the heater during peak hours and it
could thus lead to a decrease in the costs. In fact, in this
case, a higher degree of freedom for the heater is possi-
ble (due to overheating). Technically, it is implemented
by increasing the maximum temperature limit.

Energy and cost effects of pre-heating

To assess the effectiveness of two explained strategies in
different situations, a simulation program has been im-
plemented. The behaviour of the system has to be ana-
lyzed dynamically to study the temperature of stored
water, energy usage, and costs under different scenarios.
The simulations of the system were done using
TRNSYS (Klein et al. 2004), a well-known simulation
environment for thermodynamics. In this section, the
main parts of our simulation are described.

Assumptions in the simulations

Time-based pricing

A commonway to encourage the customers to shift their
power usage to off-peak hours is time-based pricing. In
our simulations, it is assumed that there is one daily
period of peak hours starting from 19:00 for 3 h. The
price of electricity during these period is 0.36€/KWh; it
is 0.20€/KWh for off-peak hours.

Hot water usage

For the amount of hot water usage in different hours,
two different scenarios are simulated. In both scenarios,
it is assumed that there is no water usage during the
nights (from 11:00pm to 6:00am) and that there is a
constant usage in all other hours, with the rate of 20 l/h.
There is one exception: in the second scenario
(showering scenario), it is assumed that the residents
have a high usage for a short period of time. In this case,
there is a peak in the usage, which lasts for 30 min,
starting at 21:00, with the rate of 400 l/h (so, in addition
to the normal rate of 20 l/h, this results in total rate of
420 l/h). In this scenario, the showering is happening
during the peak hours, and it is possible to shift the
energy usage from peak hours to not-peak hours by an
overheating strategy.We have chosen this scenario as an
example in which the behaviour of the human affects the
efficiency of a heating strategy. Of course, different
behavioural patterns are very well possible. As illustra-
tion, Fig. 1 shows the price and the usage in the second
scenario for 24 h.

In addition, it is assumed that the hot water at the tap
point is used at a temperature of 40.5 °C (which is
achieved by mixing hot and cold water). In our

Fig. 1 Electricity price (red) and
warm water usage in the
showering scenario (blue) in
different hours
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simulations, the temperature of hot water is the same as
the temperature of the stored water at the top of the tank
and the temperature of the cold water is the same as the
outdoor temperature (in some cases in reality, it might be
colder, especially when pipes come through the ground,
and a lot of water is consumed). In our simulations, we
have used 1-year weather data of Kloten, Zurich, Swit-
zerland, which is available in TRNSYS package. This
data is based on Remund and Kunz (2003).

Storage tank

As described above, we assume that the required hot
water is stored in a tank. In our simulations, we have
used a fully mixed tank with the volume of 0.5 m3

(capacity of 500 l). The loss coefficient of tank is 3 kJ/
h.m2.°C (it means that due to 1 °C difference between
the temperature of stored water (TTank) and ambient air
(TAmb), it will lose 3 kJ energy from per square meter of
its surface). The rate of energy loss has a linear relation
with the temperature difference between stored water
temperature and ambient air:

Lost Energy in Period A ¼ ε

� ∫
Period A

TTank−TAmbð Þdt
ð1Þ

where ε represents the loss coefficient of tank.
Because the energy loss is related to the temperature

difference and the tank temperature is decreasing, this
results in a pattern in which the energy loss per time unit
is higher in the beginning than in the end.

When the controller turns on the heating system, a
flow of water from the bottom of the storage tank goes
to a heater and returns (after heating up) to the tank. The
properties and functionality of heater are described in
the next subsection. When some hot water is used at the

tap point, it is replaced by cold water (ambient temper-
ature) in the bottom of the storage tank.

Heater

An auxiliary electrical heater is used to increase the tem-
perature of the flowstream of water, coming from (and
returning to) the storage tank. The heater is designed to add
heat to flow stream at the maximum rate of 180,000 kJ/h
whenever the controlling signal is on. The set point tem-
perature for the outlet water of heater is 95 °C.

Controlling strategies

The two different controlling strategies are specified as
follows.

Regular strategy: this strategy is the conventional
strategy based on hysteresis. It means that during
active hours (between 6 and 23), the temperature of
water stored in the tank is kept between 60 and
70 °C. The only exception is the last active hour
(22–23am) which if the temperature goes below
60 °C, it will heat it up to 65 °C instead of 70 °C.
The reason is that since there will be no usage after
23am, extra heating of stored water is a waste of
energy.
Pre-heating strategy: this is the strategy based
on the idea of overheating. Its goal is to
reduce the energy costs by heating up the
stored water to a higher temperature before
the peak hours. It increases the minimum and
maximum temperature for the last 4 h (15:00–
19:00) before the start of the peak hours
(Tmax = 90 °C, Tmin = 85 °C). The minimum
and maximum temperatures for the other hours
are the same as in the regular strategy. Figure 2
shows the minimum and the maximum tem-
peratures for both strategies.

Fig. 2 Minimum and maximum temperature for the regular strategy (left) and the pre-heating strategy (right)
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The graphs in Fig. 3 show the results of different
controlling strategies for both scenarios, for one sample
winter day.

As can be seen in upper graphs, whenever the tem-
perature of tank is high, less hot water is mixed with
cold water.

Analysis of simulation results

The two controlling strategies (section BControling
strategies^) are applied to both scenarios. To study the
influence of the differences in weather (i.e. the ambient
temperature), one complete year is simulated, with a
time step of 5 min. Figure 4 shows the average
daily usage of the different strategies and scenarios
for different months. The following observations
can be made:

– The pre-heating strategy always consumes more
energy. This is expected, as an inherent property
of all kinds of energy storages, e.g. batteries, is that
they lose energy during the storing period. Conse-
quently, some part of the stored energy in the tank is

always lost due to its loss coefficient. It is clear that
storing energy for longer time leads to more loss.
Also, the larger the difference between the temper-
ature of the tank and the surrounding air, the more
energy is lost.

– As expected, the usage in cold months is
higher than usage in warmer months. To un-
derstand this from a theoretical perspective,
one can have a look at Eq. 1: during winter
days, the value of Tamb is lower; as a result, there is a
larger difference between the temperature of the
tank and the ambient air, which increase the rate
of energy loss.

– The difference between the energy usage in the two
strategies is larger in the warm months. Especially,
in the non-showering scenario for July, the pre-
heating strategy uses 27% more energy than the
regular strategy. The reason is the high tempera-
ture of the tank during non-active hours (23:00
to 6:00). If the stored energy in the tank is not

Fig. 3 Comparison of two strategies for two different scenarios.
In these graphs, dashed lines show the temperature (left axis) and
continues lines show the rate of stream flow in pipes (right axis). It

should be noticed that range of right axis in bottom graphs are
different from upper graphs
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used during active hours, it will (mostly) be
wasted during the night. So, the best case is that
at the last moments of the active hours (before
23:00), the temperature of tank would be around
the minimum possible temperature (60 °C).
However, this does not happen in many cases.

When pre-heating is happening and a large
amount of energy is stored in the tank, but there
is not much usage after that (non-showering
scenario), most of the energy that is added dur-
ing the preheating phase will be wasted during
the night. According to Paull and colleagues, the
temperature of the water in a domestic water
tank drops exponentially when no water is used
(Paull et al. 2010). For instance, in Fig. 3, when
the pre-heating strategy is applied and no
showering is taking place (Fig. 3, top right),
the temperature of the stored water increases
up to 88.4 °C. However, due to lack of usage
in subsequent hours, at the beginning of the
non-active period (23:00), there is still a lot of
energy stored in the tank (i.e. the temperature of
tank at 23:00 is 74.10, which will be waste
during night). It should be mentioned that this
graph is from a cold day (January). In warm
days, the temperature of tank at 23:00 is even
higher.

Table 1 compares the temperature of tank at
the beginning of non-active hours for a cold and
for a hot day, for different scenarios and differ-
ent strategies.

Figure 5 shows average daily cost of different sce-
narios according to each controlling strategy.

As is depicted in the bottom graph, when there is a
high usage during peak hours, for all months, the cost of
the pre-heating strategy is lower than the costs for the
regular strategy, in spite of the higher energy usage. The
reason lies in the main idea of the pre-heating strategy.
The strategy pretends to reduce the energy usage during
the hours with high price, by overheating the water
before the peak hours. Even though part of stored energy
will be wasted, in case of high usage (showering sce-
nario), the overall costs are lower than in the regular
strategy. So, in the cases that we are sure about a large
usage during peak hours, overheating of the stored water
before the peak hours is a wise strategy.

However, there is a different story for the first sce-
nario (upper graph in Fig. 5). As can be seen, during the
colder months, overheating is still cheaper than the
regular strategy. However, in warmer months, it is more
expensive. This is because in the warmer months, most
of the added energy is not used, as the cold water that
comes in via the pipe is warmer than during the winter,
and consequently less hot water is used. Therefore, most
of the added heat is wasted during the night.

In general, for this set up (prices, efficiency, scenar-
ios, minimum andmaximum temperatures, etc.) for cold
days, overheating is cheaper, while for warmer days, it is

Fig. 4 Average daily usage for both controlling strategies. Up: non-showering scenario; bottom: showering scenario

Table 1 Temperature of tank at the beginning of non-active hours

Cold day
January

Warm day
July

Regular
strategy

Pre-heating
strategy

Regular
strategy

Pre-heating
strategy

Non-showering 64.0 °C 74.1 °C 61.3 °C 79.0 °C

Showering 64.0 °C 60.8 °C 67.7 °C 71.7 °C
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only better in case of high usage during the subsequent
hours. Consequently, knowledge about the user behav-
iour (will there be usage of hot water) is needed to
decide on the optimal strategy.

Discussion of simulation results

In this section, we provide a further analysis of the effect
of different probabilities of the behaviour on the choice
for a specific strategy.

On a particular day, it is affordable to use the
pre-overheating strategy when the prediction of its
cost is less than the prediction of the cost of
regular strategy:

CostOverHeating < CostRegular ð2Þ
By using machine learning algorithms, a smart

thermostat can learn the probability of a high
usage during peak hours for different days. As-

sume that, for a particular day, the probability of
taking a shower2 is P. Then,

CostRegular ¼ Ρ CostRegular−Shower

þ 1−Ρð ÞCostRegular−NoShower ð3Þ

CostOverHeating ¼ Ρ CostOverheating−Shower

þ 1−Ρð ÞCostOverheating−NoShower ð4Þ
Then we can rewrite (2) as follows:

Ρ CostOverheating−Shower

þ 1−Ρð ÞCostOverheating−NoShower
< Ρ CostRegular−Shower

þ 1−Ρð ÞCostRegular−NoShower ð5Þ
or

Ρ CostOverheating−Shower−CostRegular−Shower
� �

< 1−Ρð Þ CostRegular−NoShower−CostOverheating−NoShower
� � ð6Þ

Therefore, by using the information from Fig. 5
(CostOverHeating-Shower, CostRegular-Shower, CostOverHeating-
NoShower, CostRegular-NoShower), it would be possible to
find the threshold value for P. When the estimated
probability of taking shower is higher than this thresh-
old, it is better to switch from the regular strategy to pre-
overheating. This threshold is calculated for different
months and the result is reported in Fig. 6. The figure

makes clear that during the cold months fromDecember
to March, it is always cost efficient to pre-heat. And, for
the warmest month, July, the probability of showering

2 A more realistic implementation would have been to use a distribu-
tion of chances of taking a shower at different time points. However,
for investigating the added value of knowledge about showering our
implementation suffices.

Fig. 5 Average daily costs for both controlling strategies. Up: non-showering scenario, bottom: showering scenario
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should be at least 60% to switch to the pre-overheating
strategy.

This result shows that knowledge about the behav-
iour of consumers and the pattern of their energy usage
(e.g. usage of hot water, time of showering) can help to
decide about cost-effective heating strategies. This
knowledge can be provided by residents or can be
learned by an energy management system (smart ther-
mostat). Different approaches for such a prediction have
already been proposed in the literature (e.g. Edwards
et al. 2012; Ahmad et al. 2014).

Optimal target temperature for pre-heating

Simulation

In the simulations of pre-heating in the previous
section, a fixed target temperature Tmax = 90 °C
was used. In this section, we investigate the effect
of different values for Tmax, both on the electricity
usage and the costs in the pre-heating strategy.
Again, we consider the two scenarios (showering
and non-showering). All other characteristics are
similar to the previous simulation. Figure 7 shows
the effects of different target temperatures, Tmax.

In the energy usage simulations (the graphs on the
left in Fig. 7), the intuitive characteristics of the simula-
tions are present. First, the energy usage is increasing
when a higher Tmax is chosen, which holds for all
months. Also, it is visible that colder months result in
higher energy usage. Finally, in the showering scenari-
os, more energy is needed than in the non-showering
scenarios.

The graphs of the costs (the graphs on the right in
Fig. 7) show more interesting patterns. For the most
of the scenarios, the costs are initially decreasing
with an increase of the Tmax, but after some time,
they start increasing. This results in a monthly opti-
mum value of Tmax, which is depicted by a small
asterisk in the graph. The optimum value is higher
in colder months. Also, the optimum in the
showering scenarios is much higher than in not-
showering scenarios (e.g. for September 83 versus
74). In the next subsection, these results are
discussed in more detail.

In the showering scenario, some non-monotonicity is
visible in the colder months (like January): first the costs
decrease with a higher Tmax, then they increase and later
they decrease again. Both in the energy and costs
graphs, it can be observed that at some point, the energy
and costs stabilize: higher temperatures for pre-heating
do not increase the energy usage nor the costs.

Discussion of simulation results

In this section, we discuss and interpret a number of
observations in the simulations. First, we discuss the flat
tail of the graphs. The figures show that energy and
costs do not further increase anymore after some value
of Tmax. The reason behind this phenomenon is that the
length of time for pre-heating in our simulations is
limited (3 h). Because also the maximum power of the
heater is fixed (180,000 kJ/h), there is a maximum
temperature of the water that can be reached during the
pre-heating period. Increasing Tmax to higher values
does not have any practical effect. In colder months,
this maximum is lower as the start temperature is lower.
For example, for January, the highest reachable

Fig. 6 Required level of certainty about user behaviour for pre-heating to be cost-efficient
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temperature during the pre-heating period is 89, and
increasing Tmax to higher temperatures is ineffective.
For July, this value is 91°.

A second issue to discuss is the sudden changes
in the slope of the lines, which is especially visible
in the graphs of the costs in the showering scenarios.
We would expect that the costs are higher for values
of Tmax that are lower than the optimum value. The
reason is that the amount of energy that has been
generated during the pre-heating period is not suffi-
cient for the demand during the peak hours; there-
fore, the heater needs to be turned on during the
expensive period. This can be seen when the costs
for Tmax = 84 are compared with the costs of Tmax =
82. However, it is not the case when we compare
Tmax = 84 with Tmax = 86. To explain this, we should
look in more detail at what is happening during the
pre-heating period. Figure 8 shows the simulation
results for both scenarios for the month January.

The figure shows that the scenario in which Tmax

is 86°, the temperature drops below the threshold for
heating (Tmax = 5) just before the start of the pre-
heating period. In comparison, in the scenario of
Tmax = 84, this happens earlier. As a result, the sec-
ond heating phase in the pre-heating period is longer
and results in a higher temperature at the end of the

pre-heating. Therefore, in the first scenario (Tmax =
86), the temperature is too low in the last minutes of
the peak hours, and heater has to be turned on in the
expensive period.

In short, there are two main reasons that explain
the higher cost for Tmax = 86 in comparison to the
case when Tmax = 84. First, the Tmax = 86 scenario
needs more energy during off-peak hours. Second,
as the temperature at the beginning of peak hours is
higher in the second scenario, there will be enough
stored energy for passing peak hours, while when
Tmax is 86, stored energy is not enough and the
heater will be turned on at the last minutes of peak
hours.

These results show that not only Tmax, but also the
length of overheating period affects the energy usage
and costs. If the length of this period is too short, then
there is not enough time to reach to Tmax. On the other
hand, if it is too long, then part of energy will waste and
the stored energy might even be not enough for the
demand during the peak hours. In short, the best length
for overheating is the time needed to heat up the water in
the tank to Tmax. The optimal length for overheating can
be calculated by a smart thermostat based on its predic-
tion about the Tamb, and the amount of water usage in the
following hours.

Fig. 7 Energy usage (left) and costs (right) of pre-overhearing strategy with different Tmax for different months. The optimum Tmax

(minimum cost) for different months are showed by an asterisk in the costs graphs
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Conclusions and future works

The main aim of this research was to investigate to what
extent understanding of human behaviour can help to
produce better controlling strategies for water heating
systems, in the sense that they are more energy efficient
or lead to reduced costs. We did this by comparing
simulations of different controlling strategies (pre-heating
versus non pre-heating) in combination with actual be-
haviours, and by investigating what maximum tempera-
tures for pre-heating should is the best choice. It is clear
that pre-heating does not lead to more energy efficiency,
but it might lead to reduced costs in scenarios of dynamic
prices, especially during the colder winter months.

The sensitivity of results to different aspects is a sign
that it is important to make detailed predictions that take
the probabilities of user behaviour into account when
determining the effectiveness of different strategies and
the effects of different changes. Apart from the two aspects
that are investigated in this paper (time of usage, maximum
temperature), other aspects might influence the efficiency
of the strategies as well, for example: the amount and the

temperature of the water used, the ambient temperature,
the type and size of the tank, length of peak hours period,
etc. In addition, economical aspects can have a significant
effect on the results. For example, a larger difference in the
energy price during peak and non-peak hours makes the
pre-overheating strategy more beneficial. However, study-
ing the effect of each of these aspects is beyond the subject
of this article and requires simulations different scenarios.
It is an interesting topic for future work.

Another interesting future task is the validation of the
results. This would require actual data of hot water
usage of several houses with different types of house-
holds (single, couple with children, elderly).

An important conclusion about the pre-heating tem-
perature is that the length of the pre-heating period is
very relevant to determine the most cost-effective solu-
tion. If it is too large, energy is wasted because it is kept
at a high temperature for a too long period; on the
contrary, if it is short, then the amount of stored energy
water will not reach to the goal temperature. Therefore,
the length of the pre-heating needs to be calculated
based on the current temperature, goal temperature, size

Fig. 8 Simulation of the temperature in the tank and the heating periods for the month January. At the top, the scenario for Tmax = 86; at the
bottom, the scenario for Tmax = 84
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of thermal tank, the outdoor temperature and the maxi-
mum power of the heater.

As emphasized in this paper, the effectiveness of any
strategy for controlling the temperature of tank is de-
pendent on our knowledge of the hot-water usage pat-
tern of the residents. As a consequence, a useful direc-
tion of research is the automated learning of personal-
ized usage patterns. Those patterns can then be used to
predict the usage of hot water in next hours and can be
implemented as smart heating strategies by the system.

Space heating and water heating are two main places
that we use energy in our houses, around 40 and 20%,
respectively. In many houses, these two kinds of usage are
integrated and there is one system (ormaybe one heater and
two storage tanks) for both purposes. Therefore, it is better
if we also study both usages together and try to design one
efficient controller (with one or two tanks) for both.

Nowadays, alternative domestic heating systems get
much attention, such as the use of heat pumps. A heat
pump takes thermal energy from the environment (from
air, water or ground) and uses it to heat water of a central
heating system in the house. Air source heat pumps,
ASHP, are more common for domestic usage (Tabatabaei
et al. 2015). As a possible future work, in our simulations,
we can replace the old fashion electrical heater by a
modern ASHP. This alternation will make both simulation
and controller more complex, because the performance of
ASHP is not a constant (like electrical heater) but vary by
changes of temperature of ambient air and stored water.

In addition, when DHW is heated by a solar thermal
plant, usually the consumption is not coupled with the solar
irradiation daily profile. Since usually, solar irradiance will
not always be enough to raise the water temperature up to
60 °C, an auxiliary boiler completes the plant. Therefore,
having solar thermal plantsmake our systemmore efficient,
but the optimum controlling will be a more challenging
task, which can study as an interesting future work.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict
of interest.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestrict-
ed use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if
changes were made.

References

Ahmad, A. S., Hassan, M. Y., Abdullah, M. P., Rahman, H. A.,
Hussin, F., Abdullah, H., & Saidur, R. (2014). A review on
applications of ANN and SVM for building electrical energy
consumption forecasting. Renewable and Sustainable
Energy Reviews, 33, 102–109. https://doi.org/10.1016/j.
rser.2014.01.069.

Arteconi, A., Hewitt, N. J., & Polonara, F. (2013). Domestic
demand-side management (DSM): Role of heat pumps and
thermal energy storage (TES) systems. Applied Thermal
Engineering, 51(1), 155–165. https://doi.org/10.1016/j.
applthermaleng.2012.09.023.

Bartram, J. (2007). Legionella and the prevention of Legionellosis.
World Health Organization https://books.google.
nl/books?hl=nl&lr=&id=rAoI8DzB7YgC&oi=fnd&pg=
P T 5 & d q =
+Legionella+and+the+prevention+of+legionellosis&ots=
m8hk72DOT8&sig=E2I-l3yTMgkctbOwGdeHw3MF774.

Crawford, R. H., & Treloar, G. J. (2004). Net energy analysis of
solar and conventional domestic hot water Systems in
Melbourne, Australia. Solar Energy, 76(1), 159–163.
https://doi.org/10.1016/j.solener.2003.07.030.

Du, P., & Lu, N. (2011). Appliance commitment for household
load scheduling. Smart Grid, IEEE Transactions on, 2(2),
411–419. https://doi.org/10.1109/TSG.2011.2140344.

Edwards, R. E., New, J., & Parker, L. E. (2012). Predicting future
hourly residential electrical consumption: a machine learning
case study. Energy and Buildings, 49, 591–603. https://doi.
org/10.1016/j.enbuild.2012.03.010.

Klein, S. A., Beckman, W. A., Mitchell, J. W., Duffie, J. A.,
Duffie, N. A., Freeman, T. L., Mitchell, J. C., et al. (2004).
TRNSYS 16–a TRaNsient system simulation program, user
manual. In Solar energy laboratory. Madison: University of
Wisconsin-Madison.

Kreuzinger, T., Bitzer, M., & Marquardt, W. (2008). State estima-
tion of a stratified storage tank. Control Engineering
Practice, 16(3), 308–320. https://doi.org/10.1016/j.
conengprac.2007.04.013.

Lane, I. E., & Beute, N. (1996). A model of the domestic hot water
load. Power Systems, IEEE Transactions on, 11(4), 1850–
1855. https://doi.org/10.1109/59.544653.

Lane, I. E., et al. (1996). The multi-objective controller: a novel
approach to domestic hot water load control. Power Systems,
IEEE Transactions on, 11(4), 1832–1837.

Loesch, M., Hufnagel, D., Steuer, S., Fabnacht, T., & Schmeck, H.
(2014). BDemand side management in smart buildings by
intelligent scheduling of heat pumps.^ In Intelligent Energy
and Power Systems (IEPS), 2014 I.E. International
Conference on, 1–6. IEEE. http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=6874181.

Meyer, J. P., & Tshimankinda, M. (1998). Domestic hot-water
consumption in south African apartments. Energy, 23(1),
61–66. https://doi.org/10.1016/S0360-5442(97)00069-8.

Ndoye, B., & Sarr, M. (2008). Analysis of domestic hot water
energy consumption in large buildings under standard con-
ditions in Senegal. Building and Environment, 43(7), 1216–
1224. https://doi.org/10.1016/j.buildenv.2007.02.012.

Nehrir, M. H., B. J.LaMeres, & V. Gerez (1999). BA customer-
interactive electric water heater demand-side management

1808 Energy Efficiency (2018) 11:1797–1809

https://doi.org/10.1016/j.rser.2014.01.069
https://doi.org/10.1016/j.rser.2014.01.069
https://doi.org/10.1016/j.applthermaleng.2012.09.023
https://doi.org/10.1016/j.applthermaleng.2012.09.023
https://books.google.nl/books?hl=nl&lr=&id=rAoI8DzB7YgC&oi=fnd&pg=PT5&dq=+Legionella+and+the+prevention+of+legionellosis&ots=m8hk72DOT8&sig=E2I-l3yTMgkctbOwGdeHw3MF774
https://books.google.nl/books?hl=nl&lr=&id=rAoI8DzB7YgC&oi=fnd&pg=PT5&dq=+Legionella+and+the+prevention+of+legionellosis&ots=m8hk72DOT8&sig=E2I-l3yTMgkctbOwGdeHw3MF774
https://books.google.nl/books?hl=nl&lr=&id=rAoI8DzB7YgC&oi=fnd&pg=PT5&dq=+Legionella+and+the+prevention+of+legionellosis&ots=m8hk72DOT8&sig=E2I-l3yTMgkctbOwGdeHw3MF774
https://books.google.nl/books?hl=nl&lr=&id=rAoI8DzB7YgC&oi=fnd&pg=PT5&dq=+Legionella+and+the+prevention+of+legionellosis&ots=m8hk72DOT8&sig=E2I-l3yTMgkctbOwGdeHw3MF774
https://books.google.nl/books?hl=nl&lr=&id=rAoI8DzB7YgC&oi=fnd&pg=PT5&dq=+Legionella+and+the+prevention+of+legionellosis&ots=m8hk72DOT8&sig=E2I-l3yTMgkctbOwGdeHw3MF774
https://doi.org/10.1016/j.solener.2003.07.030
https://doi.org/10.1109/TSG.2011.2140344
https://doi.org/10.1016/j.enbuild.2012.03.010
https://doi.org/10.1016/j.enbuild.2012.03.010
https://doi.org/10.1016/j.conengprac.2007.04.013
https://doi.org/10.1016/j.conengprac.2007.04.013
https://doi.org/10.1109/59.544653
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6874181
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6874181
https://doi.org/10.1016/S0360-5442(97)00069-8
https://doi.org/10.1016/j.buildenv.2007.02.012


strategy using fuzzy logic.^ In Power Engineering Society
1999 WinterMeet ing, IEEE , 1 :433–436. IEEE.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=747494.

Nehrir, M. Hashem, Jia, R., Pierre, D. A., & Hammerstrom, D. J.
(2007). BPower management of aggregate electric water
heater loads by voltage control.^ In 2007 I.E. Power
Engineering Society General Meeting. https://www.infona.
pl/resource/bwmeta1.element.ieee-art-000004275790.

Paull, L., Li, H., & Chang, L. (2010). A novel domestic electric
water heater model for a multi-objective demand side man-
agement program. Electric Power Systems Research, 80(12),
1446–1451. https://doi.org/10.1016/j.epsr.2010.06.013.

Remund, J., & Kunz, S. (2003). Meteonorm data (worldwide).
Bern, Switzerland: METEOTEST.

Rodríguez-Hidalgo, M. d. C., Rodríguez-Aumente, P. A.,
Lecuona, A., Legrand, M., & Ventas, R. (2012). Domestic

hot water consumption vs. solar thermal energy storage: The
optimum size of the storage tank. Applied Energy, 97, 897–
906. https://doi.org/10.1016/j.apenergy.2011.12.088.

Schibuola, L., Scarpa, M., & Tambani, C. (2015). Demand re-
sponse management by means of heat pumps controlled via
real time pricing. Energy and Buildings, 90, 15–28.
https://doi.org/10.1016/j.enbuild.2014.12.047.

Tabatabaei, S. A., Treur, J., &Waumans, E. (2015). BComparative
evaluation of different computational models for perfor-
mance of air source heat pumps based on real world data.^
In Elsevier Energy Procedia,. Elsevier.

Vanthournout, K., D’hulst, R., Geysen, D., & Jacobs, G. (2012). A
smart domestic hot water buffer. Smart Grid, IEEE
Transactions on, 3(4), 2121–2127. https://doi.org/10.1109
/TSG.2012.2205591.

Energy Efficiency (2018) 11:1797–1809 1809

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=747494
https://www.infona.pl/resource/bwmeta1.element.ieee-art-000004275790
https://www.infona.pl/resource/bwmeta1.element.ieee-art-000004275790
https://doi.org/10.1016/j.epsr.2010.06.013
https://doi.org/10.1016/j.apenergy.2011.12.088
https://doi.org/10.1016/j.enbuild.2014.12.047
https://doi.org/10.1109/TSG.2012.2205591
https://doi.org/10.1109/TSG.2012.2205591

	The role of knowledge about user behaviour in demand response management of domestic hot water usage
	Abstract
	Introduction
	Background
	Demand side management in residential settings
	Using hot water as thermal buffer
	Modelling domestic hot water systems

	Controling strategies
	Constraints on the temperature of tank
	Regular controlling strategy
	Pre-heating strategy

	Energy and cost effects of pre-heating
	Assumptions in the simulations
	Time-based pricing
	Hot water usage
	Storage tank
	Heater
	Controlling strategies

	Analysis of simulation results
	Discussion of simulation results

	Optimal target temperature for pre-heating
	Simulation
	Discussion of simulation results

	Conclusions and future works
	References


