742 research outputs found
MiniBooNE Status
MiniBooNE, the Mini Booster Neutrino Experiment at Fermilab, will confirm or
refute the existence of the neutrino oscillation signal seen by the Liquid
Scintillator Neutrino Detector (LSND) Experiment at Los Alamos National
Laboratory. The experiment will search for the appearance of electron neutrinos
in a beam of muon neutrinos. This work presents preliminary results from the
first round of analyses of charged current quasi-elastic events, neutral
current pi0 events, and neutral current elastic events. The neutrino
oscillation analysis is not presented in this work; it is a blind analysis
which will not be presented until the full set of data has been collected.Comment: 8 pages, 11 figures, to be published in the Proceedings of the
NOON2004 Workshop (5th Workshop on Neutrino Oscillations and their Origin,
Tokyo, Japan, Feb. 11-15, 2004
MiniBooNE
The physics motivations, design, and status of the Booster Neutrino
Experiment at Fermilab, MiniBooNE, are briefly discussed. Particular emphasis
is given on the ongoing preparatory work that is needed for the MiniBooNE muon
neutrino to electron neutrino oscillation appearance search. This search aims
to confirm or refute in a definitive and independent way the evidence for
neutrino oscillations reported by the LSND experiment.Comment: 3 pages, no figures, to appear in the proceedings of the 9th
International Conference on Astroparticle and Underground Physics (TAUP
2005), Zaragoza, Spain, 10-14 Sep 200
Construction and Assembly of the Wire Planes for the MicroBooNE Time Projection Chamber
In this paper we describe how the readout planes for the MicroBooNE Time
Projection Chamber were constructed, assembled and installed. We present the
individual wire preparation using semi-automatic winding machines and the
assembly of wire carrier boards. The details of the wire installation on the
detector frame and the tensioning of the wires are given. A strict quality
assurance plan ensured the integrity of the readout planes. The different tests
performed at all stages of construction and installation provided crucial
information to achieve the successful realisation of the MicroBooNE wire
planes.Comment: 24 pages, 22 figures, accepted for publication as Technical Report in
JINS
Measurement of Muon Neutrino Quasi-Elastic Scattering on Carbon
The observation of neutrino oscillations is clear evidence for physics beyond
the standard model. To make precise measurements of this phenomenon, neutrino
oscillation experiments, including MiniBooNE, require an accurate description
of neutrino charged current quasi-elastic (CCQE) cross sections to predict
signal samples. Using a high-statistics sample of muon neutrino CCQE events,
MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments,
accurately characterizes the CCQE events observed in a carbon-based detector.
The extracted parameters include an effective axial mass, M_A^eff = 1.23+/-0.20
GeV, that describes the four-momentum dependence of the axial-vector form
factor of the nucleon; and a Pauli-suppression parameter, kappa =
1.019+/-0.011. Such a modified Fermi gas model may also be used by future
accelerator-based experiments measuring neutrino oscillations on nuclear
targets.Comment: 5 pages, 3 figure
Measurement of the \nu_\mu charged current \pi^+ to quasi-elastic cross section ratio on mineral oil in a 0.8 GeV neutrino beam
Using high statistics samples of charged current interactions,
MiniBooNE reports a measurement of the single charged pion production to
quasi-elastic cross section ratio on mineral oil (CH), both with and
without corrections for hadron re-interactions in the target nucleus. The
result is provided as a function of neutrino energy in the range 0.4 GeV 2.4 GeV with 11% precision in the region of highest statistics. The
results are consistent with previous measurements and the prediction from
historical neutrino calculations.Comment: 4 pages, 2 figure
Nucleon Decay, Atmospheric Neutrinos, and Cosmic Rays at DUNE: September 2016 Progress Report
We report on the progress made within the Nucleon Decay, Atmospheric Neutrinos, and Cosmogenics Physics Working Groups since the DUNE CDR, and in particular in the period September 2015 { September 2016. This note is also intended to provide input for the September 2016 Preliminary Report of the Far Detector Task Force. We report jointly for the three WGs since they are tightly coupled. They make use of the same DUNE Far Detector for their physics studies, they share the same energy regime, and they are all characterized by random, non-beam triggers. Finally, cosmogenic events are a background for atmospheric neutrino physics, and both cosmogenic events and atmospheric neutrinos are a background for nucleon decay physics. Recent progress within the Nucleon Decay, Atmospheric Neutrinos and Cosmogenics Physics Working Groups is reported in Secs. II, III and IV, respectively
- …