324 research outputs found

    Characterization of the rat basilar artery in vitro

    Full text link
    Segments of the rat basilar artery were examined in vitro for their mechanical responsiveness to a variety of vasoactive substances. Serotonin was the most potent agonist while norepinephrine elicited a dose-dependent relaxation. The findings lend support to the concept that there exists a marked heterogeneity amongst species in cerebrovascular responsiveness.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42737/1/18_2005_Article_BF01959732.pd

    OATP1B1 and tumour OATP1B3 modulate exposure, toxicity, and survival after irinotecan-based chemotherapy

    Get PDF
    Background: Treatment of advanced and metastatic colorectal cancer with irinotecan is hampered by severe toxicities. The active metabolite of irinotecan, SN-38, is a known substrate of drug-metabolising enzymes, including UGT1A1, as well as OATP and ABC drug transporters.Methods:Blood samples (n=127) and tumour tissue (n=30) were obtained from advanced cancer patients treated with irinotecan-based regimens for pharmacogenetic and drug level analysis and transporter expression. Clinical variables, toxicity, and outcomes data were collected.Results:SLCO1B1 521C was significantly associated with increased SN-38 exposure (P\u3c0.001), which was additive with UGT1A1∗28. ABCC5 (rs562) carriers had significantly reduced SN-38 glucuronide and APC metabolite levels. Reduced risk of neutropenia and diarrhoea was associated with ABCC2-24C/T (odds ratio (OR)=0.22, 0.06-0.85) and CES1 (rs2244613; OR=0.29, 0.09-0.89), respectively. Progression-free survival (PFS) was significantly longer in SLCO1B1 388G/G patients and reduced in ABCC2-24T/T and UGT1A1∗28 carriers. Notably, higher OATP1B3 tumour expression was associated with reduced PFS.Conclusions:Clarifying the association of host genetic variation in OATP and ABC transporters to SN-38 exposure, toxicity and PFS provides rationale for personalising irinotecan-based chemotherapy. Our findings suggest that OATP polymorphisms and expression in tumour tissue may serve as important new biomarkers

    DNA-decorated carbon nanotubes for chemical sensing

    Full text link
    We demonstrate a new, versatile class of nanoscale chemical sensors based on single-stranded DNA (ss-DNA) as the chemical sensors recognition site and single-walled carbon nanotube field effect transistors (swCN-FET) as the electronic read-out component. swCN-FETs with a nanoscale coating of ss-DNA respond to gas odors that do not cause a detectable conductivity change in bare devices. Responses of ss-DNA/swCN-FETs differ in sign and magnitude for different gases, and can be tuned by choosing the base sequence of the ss-DNA. ss-DNA/swCN-FET sensors detect a variety of odors, with rapid response and recovery times on the scale of seconds. The sensor surface is self-regenerating: samples maintain a constant response with no need for sensor refreshing through at least 50 gas exposure cycles. This very remarkable set of attributes makes sensors based on ss-DNA decorated nanotubes very promising for "electronic nose" and "electronic tongue" applications ranging from homeland security to disease diagnosis.Comment: 9 pages, 5 figures, Nano Letters web release: 23-Aug-200

    Fusion of secretory vesicles isolated from rat liver

    Get PDF
    Secretory vesicles isolated from rat liver were found to fuse after exposure to Ca2+. Vescle fusion is characterized by the occurrence of twinned vesicles with a continuous cleavage plane between two vesicles in freeze-fracture electron microscopy. The number of fused vesicles increases with increasing Ca2+-concentrations and is half maximal around 10–6 m. Other divalent cations (Ba2+, Sr2+, and Mg2+) were ineffective. Mg2+ inhibits Ca2+-induced fusion. Therefore, the fusion of secretory vesiclesin vitro is Ca2+ specific and exhibits properties similar to the exocytotic process of various secretory cells. Various substances affecting secretionin vivo (microtubular inhibitors, local anethetics, ionophores) were tested for their effect on membrane fusion in our system. The fusion of isolated secretory vesicles from liver was found to differ from that of pure phospholipid membranes in its temperature dependence, in its much lower requirement for Ca2+, and in its Ca2+-specificity. Chemical and enzymatic modifications of the vesicle membrane indicate that glycoproteins may account for these differences

    Predicting Outcomes in Men With Metastatic Nonseminomatous Germ Cell Tumors (NSGCT): Results From the IGCCCG Update Consortium

    Get PDF
    Purpose: The classification of the International Germ Cell Cancer Collaborative Group (IGCCCG) plays a pivotal role in the management of metastatic germ cell tumors but relies on data of patients treated between 1975 and 1990. Materials and methods: Data on 9,728 men with metastatic nonseminomatous germ cell tumors treated with cisplatin- and etoposide-based first-line chemotherapy between 1990 and 2013 were collected from 30 institutions or collaborative groups in Europe, North America, and Australia. Clinical trial and registry data were included. Primary end points were progression-free survival (PFS) and overall survival (OS). The survival estimates were updated for the current era. Additionally, a novel prognostic model for PFS was developed in 3,543 patients with complete information on potentially relevant variables. The results were validated in an independent data set. Results: Compared with the original IGCCCG publication, 5-year PFS remained similar in patients with good prognosis with 89% (87%-91%) versus 90% (95% CI, 89 to 91), but the 5-year OS increased from 92% (90%-94%) to 96% (95%-96%). In patients with intermediate prognosis, PFS remained similar with 75% (71%-79%) versus 78% (76%-80%) and the OS increased from 80% (76%-84%) to 89% (88%-91%). In patients with poor prognosis, the PFS increased from 41% (95% CI, 35 to 47) to 54% (95% CI, 52 to 56) and the OS from 48% (95% CI, 42 to 54) to 67% (95% CI, 65 to 69). A more granular prognostic model was developed and independently validated. This model identified a new cutoff of lactate dehydrogenase at a 2.5 upper limit of normal and increasing age and presence of lung metastases as additional adverse prognostic factors. An online calculator is provided (https://www.eortc.org/IGCCCG-Update). Conclusion: The IGCCCG Update model improves individual prognostication in metastatic nonseminomatous germ cell tumors. Increasing age and lung metastases add granularity to the original IGCCCG classification as adverse prognostic factors

    Chemoradiation for advanced hypopharyngeal carcinoma: a retrospective study on efficacy, morbidity and quality of life

    Get PDF
    Chemoradiation (CRT) is a valuable treatment option for advanced hypopharyngeal squamous cell cancer (HSCC). However, long-term toxicity and quality of life (QOL) is scarcely reported. Therefore, efficacy, acute and long-term toxic effects, and long-term QOL of CRT for advanced HSCC were evaluated,using retrospective study and post-treatment quality of life questionnaires. in a tertiary hospital setting. Analysis was performed of 73 patients that had been treated with CRT. Toxicity was rated using the CTCAE score list. QOL questionnaires EORTC QLQ-C30, QLQ-H&N35, and VHI were analyzed. The most common acute toxic effects were dysphagia and mucositis. Dysphagia and xerostomia remained problematic during long-term follow-up. After 3 years, the disease-specific survival was 41%, local disease control was 71%, and regional disease control was 97%. The results indicated that CRT for advanced HSCC is associated with high locoregional control and disease-specific survival. However, significant acute and long-term toxic effects occur, and organ preservation appears not necessarily equivalent to preservation of function and better QOL

    The Use of Phage-Displayed Peptide Libraries to Develop Tumor-Targeting Drugs

    Get PDF
    Monoclonal antibodies have been successfully utilized as cancer-targeting therapeutics and diagnostics, but the efficacies of these treatments are limited in part by the size of the molecules and non-specific uptake by the reticuloendothelial system. Peptides are much smaller molecules that can specifically target cancer cells and as such may alleviate complications with antibody therapy. Although many endogenous and exogenous peptides have been developed into clinical therapeutics, only a subset of these consists of cancer-targeting peptides. Combinatorial biological libraries such as bacteriophage-displayed peptide libraries are a resource of potential ligands for various cancer-related molecular targets. Target-binding peptides can be affinity selected from complex mixtures of billions of displayed peptides on phage and further enriched through the biopanning process. Various cancer-specific ligands have been isolated by in vitro, in vivo, and ex vivo screening methods. As several peptides derived from phage-displayed peptide library screenings have been developed into therapeutics in current clinical trials, which validates peptide-targeting potential, the use of phage display to identify cancer-targeting therapeutics should be further exploited

    Breast Cancer Stem-Like Cells Are Inhibited by a Non-Toxic Aryl Hydrocarbon Receptor Agonist

    Get PDF
    Cancer stem cells (CSCs) have increased resistance to cancer chemotherapy. They can be enriched as drug-surviving CSCs (D-CSCs) by growth with chemotherapeutic drugs, and/or by sorting of cells expressing CSC markers such as aldehyde dehydrogenase-1 (ALDH). CSCs form colonies in agar, mammospheres in low-adherence cultures, and tumors following xenotransplantation in Scid mice. We hypothesized that tranilast, a non-toxic orally active drug with anti-cancer activities, would inhibit breast CSCs.We examined breast cancer cell lines or D-CSCs generated by growth of these cells with mitoxantrone. Tranilast inhibited colony formation, mammosphere formation and stem cell marker expression. Mitoxantrone-selected cells were enriched for CSCs expressing stem cell markers ALDH, c-kit, Oct-4, and ABCG2, and efficient at forming mammospheres. Tranilast markedly inhibited mammosphere formation by D-CSCs and dissociated formed mammospheres, at pharmacologically relevant concentrations. It was effective against D-CSCs of both HER-2+ and triple-negative cell lines. Tranilast was also effective in vivo, since it prevented lung metastasis in mice injected i.v. with triple-negative (MDA-MB-231) mitoxantrone-selected cells. The molecular targets of tranilast in cancer have been unknown, but here we demonstrate it is an aryl hydrocarbon receptor (AHR) agonist and this plays a key role. AHR is a transcription factor activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polycyclic aromatic hydrocarbons and other ligands. Tranilast induced translocation of the AHR to the nucleus and stimulated CYP1A1 expression (a marker of AHR activation). It inhibited binding of the AHR to CDK4, which has been linked to cell-cycle arrest. D-CSCs expressed higher levels of the AHR than other cells. Knockdown of the AHR with siRNA, or blockade with an AHR antagonist, entirely abrogated the anti-proliferative and anti-mammosphere activity of tranilast. Thus, the anti-cancer effects of tranilast are AHR dependent.We show that tranilast is an AHR agonist with inhibitory effects on breast CSCs. It is effective against CSCs of triple-negative breast cancer cells selected for anti-cancer drug resistance. These results suggest it might find applications in the treatment of breast cancer

    A Simple Mathematical Model Based on the Cancer Stem Cell Hypothesis Suggests Kinetic Commonalities in Solid Tumor Growth

    Get PDF
    Background: The Cancer Stem Cell (CSC) hypothesis has gained credibility within the cancer research community. According to this hypothesis, a small subpopulation of cells within cancerous tissues exhibits stem-cell-like characteristics and is responsible for the maintenance and proliferation of cancer. Methodologies/Principal Findings: We present a simple compartmental pseudo-chemical mathematical model for tumor growth, based on the CSC hypothesis, and derived using a ‘‘chemical reaction’ ’ approach. We defined three cell subpopulations: CSCs, transit progenitor cells, and differentiated cells. Each event related to cell division, differentiation, or death is then modeled as a chemical reaction. The resulting set of ordinary differential equations was numerically integrated to describe the time evolution of each cell subpopulation and the overall tumor growth. The parameter space was explored to identify combinations of parameter values that produce biologically feasible and consistent scenarios. Conclusions/Significance: Certain kinetic relationships apparently must be satisfied to sustain solid tumor growth and to maintain an approximate constant fraction of CSCs in the tumor lower than 0.01 (as experimentally observed): (a) the rate of symmetrical and asymmetrical CSC renewal must be in the same order of magnitude; (b) the intrinsic rate of renewal and differentiation of progenitor cells must be half an order of magnitude higher than the corresponding intrinsic rates for cancer stem cells; (c) the rates of apoptosis of the CSC, transit amplifying progenitor (P) cells, and terminally differentiate
    corecore