3,429 research outputs found

    Evidence of a Critical time in Constrained Kinetic Ising models

    Get PDF
    We study the relaxational dynamics of the one-spin facilitated Ising model introduced by Fredrickson and Andersen. We show the existence of a critical time which separates an initial regime in which the relaxation is exponentially fast and aging is absent from a regime in which relaxation becomes slow and aging effects are present. The presence of this fast exponential process and its associated critical time is in agreement with some recent experimental results on fragile glasses.Comment: 20 Pages + 7 Figures, Revte

    Facilitated spin models: recent and new results

    Full text link
    Facilitated or kinetically constrained spin models (KCSM) are a class of interacting particle systems reversible w.r.t. to a simple product measure. Each dynamical variable (spin) is re-sampled from its equilibrium distribution only if the surrounding configuration fulfills a simple local constraint which \emph{does not involve} the chosen variable itself. Such simple models are quite popular in the glass community since they display some of the peculiar features of glassy dynamics, in particular they can undergo a dynamical arrest reminiscent of the liquid/glass transitiom. Due to the fact that the jumps rates of the Markov process can be zero, the whole analysis of the long time behavior becomes quite delicate and, until recently, KCSM have escaped a rigorous analysis with the notable exception of the East model. In these notes we will mainly review several recent mathematical results which, besides being applicable to a wide class of KCSM, have contributed to settle some debated questions arising in numerical simulations made by physicists. We will also provide some interesting new extensions. In particular we will show how to deal with interacting models reversible w.r.t. to a high temperature Gibbs measure and we will provide a detailed analysis of the so called one spin facilitated model on a general connected graph.Comment: 30 pages, 3 figure

    Simple model with facilitated dynamics for granular compaction

    Get PDF
    A simple lattice model is used to study compaction in granular media. As in real experiments, we consider a series of taps separated by large enough waiting times. The relaxation of the density exhibits the characteristic inverse logarithmic law. Moreover, we have been able to identify analytically the relevant time scale, leading to a relaxation law independent of the specific values of the parameters. Also, an expression for the asymptotic density reached in the compaction process has been derived. The theoretical predictions agree fairly well with the results from the Monte Carlo simulation.Comment: 15 pages, 4 figures, REVTeX file; no changes except for single-spacing to save paper (previous version 22 pages

    Fractionation of polydisperse systems: multi-phase coexistence

    Full text link
    The width of the distribution of species in a polydisperse system is employed in a small-variable expansion, to obtain a well-controlled and compact scheme by which to calculate phase equilibria in multi-phase systems. General and universal relations are derived, which determine the partitioning of the fluid components among the phases. The analysis applies to mixtures of arbitrarily many slightly-polydisperse components. An explicit solution is approximated for hard spheres.Comment: 4 pages, 1 figur

    Shear Alignment and Instability of Smectic Phases

    Full text link
    We consider the shear flow of well-aligned one-component smectic phases, such as thermotropic smectics and lamellar diblock copolymers, below the critical region. We show that, as a result of thermal fluctuations of the layers, parallel (cc) alignment is generically unstable and perpendicular (aa) alignment is stable against long-wavelength undulations. We also find, surprisingly, that both aa and cc are stable for a narrow window of values for the anisotropic viscosity.Comment: To appear in PRL. Revtex, 1 figure

    A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella

    Get PDF
    CymA (tetrahaem cytochrome c) is a member of the NapC/NirT family of quinol dehydrogenases. Essential for the anaerobic respiratory flexibility of shewanellae, CymA transfers electrons from menaquinol to various dedicated systems for the reduction of terminal electron acceptors including fumarate and insoluble minerals of Fe(III). Spectroscopic characterization of CymA from Shewanella oneidensis strain MR-1 identifies three low-spin His/His co-ordinated c-haems and a single high-spin c-haem with His/H2O co-ordination lying adjacent to the quinol-binding site. At pH 7, binding of the menaquinol analogue, 2-heptyl-4-hydroxyquinoline-N-oxide, does not alter the mid-point potentials of the high-spin (approximately −240 mV) and low-spin (approximately −110, −190 and −265 mV) haems that appear biased to transfer electrons from the high- to low-spin centres following quinol oxidation. CymA is reduced with menadiol (Em=−80 mV) in the presence of NADH (Em=−320 mV) and an NADH–menadione (2-methyl-1,4-naphthoquinone) oxidoreductase, but not by menadiol alone. In cytoplasmic membranes reduction of CymA may then require the thermodynamic driving force from NADH, formate or H2 oxidation as the redox poise of the menaquinol pool in isolation is insufficient. Spectroscopic studies suggest that CymA requires a non-haem co-factor for quinol oxidation and that the reduced enzyme forms a 1:1 complex with its redox partner Fcc3 (flavocytochrome c3 fumarate reductase). The implications for CymA supporting the respiratory flexibility of shewanellae are discussed.</jats:p

    Glassy timescale divergence and anomalous coarsening in a kinetically constrained spin chain

    Get PDF
    We analyse the out of equilibrium behavior of an Ising spin chain with an asymmetric kinetic constraint after a quench to a low temperature T. In the limit T\to 0, we provide an exact solution of the resulting coarsening process. The equilibration time exhibits a `glassy' divergence \teq=\exp(const/T^2) (popular as an alternative to the Vogel-Fulcher law), while the average domain length grows with a temperature dependent exponent, \dbar ~ t^{T\ln 2}. We show that the equilibration time \teq also sets the timescale for the linear response of the system at low temperatures.Comment: 4 pages, revtex, includes two eps figures. Proof of energy barrier hierarchy added. Version to be published in Phys Rev Let

    Interfaces of Modulated Phases

    Full text link
    Numerically minimizing a continuous free-energy functional which yields several modulated phases, we obtain the order-parameter profiles and interfacial free energies of symmetric and non-symmetric tilt boundaries within the lamellar phase, and of interfaces between coexisting lamellar, hexagonal, and disordered phases. Our findings agree well with chevron, omega, and T-junction tilt-boundary morphologies observed in diblock copolymers and magnetic garnet films.Comment: 4 page

    Jamming percolation and glassy dynamics

    Full text link
    We present a detailed physical analysis of the dynamical glass-jamming transition which occurs for the so called Knight models recently introduced and analyzed in a joint work with D.S.Fisher \cite{letterTBF}. Furthermore, we review some of our previous works on Kinetically Constrained Models. The Knights models correspond to a new class of kinetically constrained models which provide the first example of finite dimensional models with an ideal glass-jamming transition. This is due to the underlying percolation transition of particles which are mutually blocked by the constraints. This jamming percolation has unconventional features: it is discontinuous (i.e. the percolating cluster is compact at the transition) and the typical size of the clusters diverges faster than any power law when ρρc\rho\nearrow\rho_c. These properties give rise for Knight models to an ergodicity breaking transition at ρc\rho_c: at and above ρc\rho_{c} a finite fraction of the system is frozen. In turn, this finite jump in the density of frozen sites leads to a two step relaxation for dynamic correlations in the unjammed phase, analogous to that of glass forming liquids. Also, due to the faster than power law divergence of the dynamical correlation length, relaxation times diverge in a way similar to the Vogel-Fulcher law.Comment: Submitted to the special issue of Journal of Statistical Physics on Spin glasses and related topic

    Slow Logarithmic Decay of Magnetization in the Zero Temperature Dynamics of an Ising Spin Chain: Analogy to Granular Compaction

    Full text link
    We study the zero temperature coarsening dynamics in an Ising chain in presence of a dynamically induced field that favors locally the `-' phase compared to the `+' phase. At late times, while the `+' domains still coarsen as t1/2t^{1/2}, the `-' domains coarsen slightly faster as t1/2log(t)t^{1/2}\log (t). As a result, at late times, the magnetization decays slowly as, m(t)=1+const./log(t)m(t)=-1 +{\rm const.}/{\log (t)}. We establish this behavior both analytically within an independent interval approximation (IIA) and numerically. In the zero volume fraction limit of the `+' phase, we argue that the IIA becomes asymptotically exact. Our model can be alternately viewed as a simple Ising model for granular compaction. At late times in our model, the system decays into a fully compact state (where all spins are `-') in a slow logarithmic manner 1/log(t)\sim 1/{\log (t)}, a fact that has been observed in recent experiments on granular systems.Comment: 4 pages Revtex, 3 eps figures, supersedes cond-mat/000221
    corecore